C. S. BAGEWADI, D. G. PRAKASHA and VENKATESHA

On pseudo projectively flat LP-Sasakian manifold with a coefficient α

Abstract. Recently, the notion of Lorentzian almost paracontact manifolds with a coefficient α has been introduced and studied by De et al. [1]. In the present paper we investigate pseudo projectively flat LP-Sasakian manifold with a coefficient α.

1. Introduction. In 1989, Matsumoto [2] introduced the notion of LP-Sasakian manifolds. Then Mihai and Rosca [3] introduced the same notion independently and they obtained several results in this manifold. In a recent paper, De, Shaikh and Sengupta [1] introduced the notion of LP-Sasakian manifolds with a coefficient α, which generalizes the notion of LP-Sasakian manifolds.

In the present paper we study pseudo projectively flat LP-Sasakian manifold with a coefficient α. Here we prove that in a pseudo projectively flat LP-Sasakian manifolds with a coefficient α the characteristic vector field is a concircular vector field if and only if the manifold is η-Einstein and pseudo projectively flat LP-Sasakian manifold with a coefficient α is a manifold of constant curvature if the scalar curvature r is a constant.

2. Preliminaries. Let M be the n-dimensional differential manifold endowed with a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant
vector field η and a Lorentzian metric g of type $(0, 2)$ such that for each point $p \in M$, the tensor $g_p : T_pM \times T_pM \to R$ is a non-degenerate inner product of signature $(-, +, +, \ldots, +)$, where T_pM denotes the tangent vector space of M at p and R is the real number space, which satisfies

\begin{equation}
\eta(\xi) = -1, \quad \phi^2 X = X + \eta(X)\xi, \quad (2.1)
\end{equation}

\begin{equation}
g(X, \xi) = \eta(X), \quad g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) \quad (2.2)
\end{equation}

for all vector fields X and Y. Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold M with the structure (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold M [2].

In the Lorentzian almost paracontact manifold M, the following relations hold [2]:

\begin{equation}
\phi\xi = 0, \quad \eta(\phi X) = 0, \quad (2.3)
\end{equation}

\begin{equation}
\omega(X, Y) = \omega(Y, X) \quad (2.4)
\end{equation}

where $\omega(X, Y) = g(X, \phi Y)$. In the Lorentzian almost paracontact manifold M, if the relations

\begin{equation}
(\nabla_Z \omega)(X, Y) = \alpha [g(X, Z) + \eta(X)\eta(Z)]\eta(Y) + (g(Y, Z) + \eta(Y)\eta(Z))\eta(X) \quad (2.5)
\end{equation}

and

\begin{equation}
\omega(X, Y) = \frac{1}{\alpha}(\nabla_X \eta)(Y) \quad (2.6)
\end{equation}

hold, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is called an LP-Sasakian manifold with a coefficient α [1]. An LP-Sasakian manifold with coefficient 1 is an LP-Sasakian manifold [2].

If a vector field V satisfies the equation of the following form:

\[\nabla_X V = \beta X + T(X)V, \]

where β is a non-zero scalar function and T is a covariant vector field, then V is called a torse-forming vector field [5].

In a Lorentzian manifold M, if we assume that ξ is a unit torse-forming vector field, then

\begin{equation}
(\nabla_X \eta)(Y) = \alpha [g(X, Y) + \eta(X)\eta(Y)], \quad (2.7)
\end{equation}

where α is a non-zero scalar function. Hence the manifold admitting a unit torse-forming vector field satisfying (2.7) is an LP-Sasakian manifold with a coefficient α. And, if η satisfies

\begin{equation}
(\nabla_X \eta)(Y) = \varepsilon [g(X, Y) + \eta(X)\eta(Y)], \quad \varepsilon^2 = 1, \quad (2.8)
\end{equation}

\[\nabla_X V = \beta X + T(X)V, \]

where β is a non-zero scalar function and T is a covariant vector field, then V is called a torse-forming vector field [5].
then M is called an LSP-Sasakian manifold [2]. In particular, if α satisfies (2.7) and the equation of the following form:

$$\alpha(X) = P\eta(X), \quad \alpha(X) = \nabla_X \alpha,$$

where P is a scalar function, then ξ is called a concircular vector field.

Let us consider an LP-Sasakian manifold M with the structure (ϕ, ξ, η, g) and with a coefficient α. Then we have the following relations [1]:

$$\eta(R(X, Y)Z) = -\alpha(X)\omega(Y, Z) + \alpha(Y)\omega(X, Z) + \alpha^2[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)],$$

and

$$S(X, \xi) = -\psi\alpha(X) + (n - 1)\alpha^2\eta(X) + \alpha(\phi X),$$

where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold and $\psi = \text{Trace}(\phi)$.

We now state the following results, which are used in the later section.

Lemma 2.1 ([1]). In an LP-Sasakian manifold M with a non-constant coefficient α, one of the following cases occurs:

i) $\psi^2 = (n - 1)^2$

ii) $\alpha(Y) = -P\eta(Y),$

where $P = \alpha(\xi)$.

Lemma 2.2 ([1]). In a Lorentzian almost paracontact manifold $M(\phi, \xi, \eta, g)$ with its structure (ϕ, ξ, η, g) satisfying $\omega(X, Y) = \frac{1}{\alpha}(\nabla_X \eta)(Y)$, where α is a non-zero scalar function, the vector field ξ is torse-forming if and only if the relation $\psi^2 = (n - 1)^2$ holds.

3. Pseudo projectively flat LP-Sasakian manifold with a coefficient α. Let us consider a pseudo projectively flat LP-Sasakian manifold M $(n > 3)$ with a coefficient α. First suppose that α is not constant. Then since the pseudo projective curvature tensor vanishes, the curvature tensor $'^R$ satisfies [4]

$$'^R(X, Y, Z, W) = -\frac{b}{a}[S(Y, Z)g(X, W) - S(X, Z)g(Y, W)]$$

$$+ \frac{r}{n} \left[\frac{1}{n - 1} + \frac{b}{a}\right][g(Y, Z)g(X, W) - g(X, Z)g(Y, W)]$$

and

$$'^R(X, Y, Z, W) = g(R(X, Y)Z, W),$$

where a, b are constants such that $a, b \neq 0$ and $a + b(n - 1) \neq 0$, r is the scalar curvature of the manifold. Putting $W = \xi$ in (3.1) and then using
(2.10) and (2.11), we get

\[
- \alpha(X)\omega(Y,Z) + \alpha(Y)\omega(X,Z) + \alpha^2[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]
\]

\[
(3.2)
\]

\[
= - \frac{b}{a} [S(Y,Z)\eta(X) - S(X,Z)\eta(Y)]
\]

\[
+ \frac{r}{n} \left(\frac{1}{n-1} + \frac{b}{a} \right) [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].
\]

Again if we put \(X = \xi\) in (3.2) and using (2.3) and (2.11), we obtain

\[
S(Y,Z) = \left[- \frac{a}{b} \alpha^2 + \frac{ar}{bn(n-1)} + \frac{r}{n} \right] g(Y,Z)
\]

\[
+ \left[- \frac{a}{b} \alpha^2 - (n-1)\alpha^2 + \frac{ar}{bn(n-1)} + \frac{r}{n} \right] \eta(Y)\eta(Z)
\]

\[
+ \psi\alpha(Z) - \alpha(\phi Z)\eta(Y) - \frac{a}{b} P\omega(Y,Z)
\]

where \(P = \alpha(\xi)\).

If an LP-Sasakian manifold \(M\) with the coefficient \(\alpha\) satisfies the relation

\[
S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),
\]

where \(a, b\) are the associated functions on the manifold, then the manifold \(M\) is called an \(\eta\)-Einstein manifold. Then we have [1]

\[
S(X,Y) = \left[\frac{r}{n-1} - \alpha^2 - \frac{P\psi}{n-1} \right] g(X,Y)
\]

\[
(3.4)
\]

\[
+ \left[\frac{r}{n-1} - n\alpha^2 - \frac{nP\psi}{n-1} \right] \eta(X)\eta(Y).
\]

Putting \(X = Y = e_i\), in (3.4), where \(\{e_i\}\) is an orthonormal basis of the tangent space at a point of the manifold and taking summation over \(1 \leq i \leq n\), we get

\[
(3.5)
\]

\[
r = n(n-1)\alpha^2 + n\psi P.
\]

By virtue of (3.3) and (3.4) we get

\[
\left[\frac{\alpha^2}{b}(a-b) + \frac{r(b-a)}{n(n-1)b} - \frac{P\psi}{(n-1)} \right] g(Y,Z) - \psi\alpha(Z) - \alpha(\phi Z)\eta(Y)
\]

\[
+ \left[\frac{\alpha^2}{b}(a-b) + \frac{r(b-a)}{n(n-1)b} - \frac{nP\psi}{(n-1)} \right] \eta(Y)\eta(Z)
\]

\[
+ \frac{a}{b} P\omega(Y,Z) = 0.
\]

Putting \(Y = \xi\) in (3.6), we obtain

\[
\psi\alpha(Z) - \alpha(\phi Z) = -\psi P\eta(Z),
\]
On pseudo projectively flat LP-Sasakian manifold with a coefficient α

for all Z. Replace Z by Y in the above equation, we get

$$\psi \alpha(Y) - \alpha(\phi Y) = -\psi P\eta(Y),$$

for all Y. Using (3.7) in (3.6) and then by virtue of (3.5) we get

$$Pa^b \left[\frac{\psi}{n-1} [g(Y, Z) + \eta(Y)\eta(Z)] + \omega(Y, Z) \right] = 0.$$

If $P = 0$, then from (3.7) we have $\alpha(\phi Y) = \psi \alpha(Y)$. Thus ψ is equal to ± 1 as ψ is an eigenvalue of the matrix ϕ. Hence, by virtue of Lemma 2.1, we get $\alpha(Y) = 0$ for all Y and so α is constant, which contradicts our assumption.

Consequently, we have $P \neq 0$ and hence from (3.8) we get

$$a^b \left[\frac{\psi}{n-1} [g(Y, Z) + \eta(Y)\eta(Z)] + \omega(Y, Z) \right] = 0.$$

Putting $Y = \phi Y$ in (3.9) and then using (2.3), we obtain

$$a^b \left[\frac{\psi}{n-1} \omega(Y, Z) + [g(Y, Z) + \eta(Y)\eta(Z)] \right] = 0.$$

Combining (3.9) and (3.10), we get

$$\{ \psi^2 - (n - 1)^2 \} [g(Y, Z) + \eta(Y)\eta(Z)] = 0,$$

which gives by virtue of $n > 1$

$$\psi^2 = (n - 1)^2.$$

Hence Lemma 2.2 proves that ξ is torse-forming.

We have

$$\nabla_X \eta(Y) = \beta \{ g(X, Y) + \eta(X)\eta(Y) \}.$$

Then from (2.6) we get

$$\omega(X, Y) = \frac{\beta}{\alpha} \{ g(X, Y) + \eta(X)\eta(Y) \} = g \left(\frac{\beta}{\alpha} (X + \eta(X)\xi), Y \right)$$

and $\omega(X, Y) = g(\phi X, Y)$.

Since g is non-singular, we have

$$\phi(X) = \frac{\beta}{\alpha} (X + \eta(X)\xi)$$

and

$$\phi^2(X) = \left(\frac{\beta}{\alpha} \right)^2 (X + \eta(X)\xi).$$

It follows from (2.1) that $\left(\frac{\beta}{\alpha} \right)^2 = 1$ and hence, $\alpha = \pm \beta$. Thus we have

$$\phi(X) = \pm (X + \eta(X)\xi).$$

By virtue of (3.7) we see that $\alpha(Y) = -P\eta(Y)$, where $P = \alpha(\xi)$. Thus, we conclude that ξ is a concircular vector field. Conversely, we suppose that
\(\xi \) is a concircular vector field. Then we have the equation of the following form:

\[
(\nabla_X \eta)(Y) = \beta \{g(X, Y) + \eta(X)\eta(Y)\},
\]

where \(\beta \) is a certain function and \(\nabla_X \beta = q\eta(X) \) for a certain scalar function \(q \). Hence by virtue of (2.6) we have \(\alpha = \pm \beta \). Thus

\[
\Omega(X, Y) = \varepsilon \{g(X, Y) + \eta(X)\eta(Y)\}, \quad \varepsilon^2 = 1,
\]

\[
\psi = \varepsilon(n - 1), \quad \nabla X \alpha = \alpha(X) = p\eta(X), \quad p = \varepsilon q.
\]

Using these relations in (3.3) and (3.7), it can be easily seen that \(M \) is \(\eta \)-Einstein. Thus we can state the following:

Theorem 3.1. In a pseudo projectively flat LP-Sasakian manifold \(M \) \((n > 1)\) with a non-constant coefficient \(\alpha \), the characteristic vector field \(\xi \) is a concircular vector field if and only if \(M \) is \(\eta \)-Einstein.

Next we consider the case where the coefficient \(\alpha \) is constant. In this case the following relations hold:

(3.12) \[
\eta(R(X, Y)Z) = \alpha^2 \{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\}
\]

(3.13) \[
S(X, \xi) = (n - 1)\alpha^2\eta(X).
\]

Putting \(W = \xi \) in (3.1) and then using (3.12) and (3.13), we get

(3.14) \[
a \cdot \alpha^2 \{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\} + b[S(Y, Z)\eta(X) - S(X, Z)\eta(Y)]
\]

Again putting \(X = \xi \) in (3.14) we get by virtue of (3.13) that

(3.15) \[
S(Y, Z) = \left[\frac{r}{n} \left(1 + \frac{a}{b(n - 1)}\right) - \frac{a}{b}\alpha^2\right] g(Y, Z)
\]

\[+ \frac{(a + b(n - 1))}{b} \left[\frac{r}{n(n - 1)} - \alpha^2\right] \eta(Y)\eta(Z).
\]

Hence we can state the following:

Theorem 3.2. A pseudo projectively flat LP-Sasakian manifold \(M \) \((n > 1)\) with a constant coefficient \(\alpha \) is an \(\eta \)-Einstein manifold.

Differentiating (3.15) covariantly along \(X \) and making use of (2.6) we get

(\[\nabla_X S\])(Y, Z) = \frac{dr(X)}{n - 1} \left(1 + \frac{a}{b(n - 1)}\right) [g(Y, Z) + \eta(Y)\eta(Z)]
\]

\[+ \alpha(a + b(n - 1)) \left[\frac{r}{n(n - 1)} - \alpha^2\right] \times [\omega(X, Y)\eta(Z) + \omega(X, Z)\eta(Y)].\]
where $dr(X) = \nabla_X r$. This implies that
\[(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z)\]
\[
= \frac{dr(X)}{n-1} \left(1 + \frac{a}{b(n-1)}\right) [g(Y, Z) + \eta(Y)\eta(Z)]
\]
\[
- \frac{dr(Y)}{n-1} \left(1 + \frac{a}{b(n-1)}\right) [g(X, Z) + \eta(X)\eta(Z)]
\]
\[
+ \frac{\alpha(a + b(n-1))}{b} \left[\frac{r}{n(n-1)} - \alpha^2 \right]
\]
\[
\times [\omega(X, Z)\eta(Y) - \omega(Y, Z)\eta(X)].
\]

On the other hand, in our case, since we have $(\nabla_X P)(X, Y)Z = 0$, we get $\text{div} P = 0$, where “\text{div}” denotes the divergence. So for $n > 1$, $\text{div} P = 0$ gives
\[(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z)\]
\[
= \frac{1}{n(a+b)} \left[\frac{a + (n-1)b}{n-1} \right] [g(Y, Z)dr(X) - g(X, Z)dr(Y)].
\]

It follows from (3.16) and (3.17) that
\[
\frac{1}{n(a+b)} \left[\frac{a + (n-1)b}{n-1} \right] [g(Y, Z)dr(X) - g(X, Z)dr(Y)]
\]
\[
= \frac{dr(X)}{n-1} \left(1 + \frac{a}{b(n-1)}\right) [g(Y, Z) + \eta(Y)\eta(Z)]
\]
\[
+ \frac{dr(Y)}{n-1} \left(1 + \frac{a}{b(n-1)}\right) [g(X, Z) + \eta(X)\eta(Z)]
\]
\[
+ \frac{\alpha(a + b(n-1))}{b} \left[\frac{r}{n(n-1)} - \alpha^2 \right]
\]
\[
\times [\omega(X, Z)\eta(Y) + \omega(Y, Z)\eta(X)].
\]

If r is constant, then from (3.18) we obtain
\[
\frac{\alpha(a + b(n-1))}{b} \left[\frac{r}{n(n-1)} - \alpha^2 \right] = 0.
\]

Since $a + b(n-1) \neq 0$, the above equation gives
\[(3.19) \quad r = n(n-1)\alpha^2.
\]

Now substituting (3.15) in (3.1) we get
\[
'\mathcal{R}(X, Y, Z, W) = \alpha^2 [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)]
\]
\[
+ \frac{(a + b(n-1))}{a} \left(\frac{r}{n(n-1)} - \alpha^2 \right)
\]
\[
\times [g(Y, W)\eta(X)\eta(Z) - g(X, W)\eta(Y)\eta(Z)].
\]
Hence by using (3.19) in (3.20) it follows that,
\[('R(X,Y,Z,W) = \alpha^2 [g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]. \]
This shows that the manifold is of constant curvature. Thus we can state the following:

Theorem 3.3. In a pseudo projectively flat LP-Sasakian manifold \(M (n > 1) \) with a constant coefficient \(\alpha \), if the scalar curvature \(r \) is constant, then \(M \) is of constant curvature.

Acknowledgement. The authors are grateful to referee and to Prof. Stanislaw Prus for their valuable suggestions in improving the paper.

References

C. S. Bagewadi, D. G. Prakasha
Department of Mathematics and Computer Science
Kuvempu University
Jnana Sahyadri-577 451, Shimoga
Karnataka, India
e-mail: prof_bagewadi@yahoo.co.in

Venkatesha
Department of Mathematics and Computer Science
Kuvempu University
Jnana Sahyadri-577 451, Shimoga
Karnataka, India
e-mail: vens_2003@rediffmail.com

Received June 11, 2007