I. R. KAYUMOV

Estimates of L_p norms for sums of positive functions

Abstract. We present new inequalities of L_p norms for sums of positive functions. These inequalities are useful for investigation of convergence of simple partial fractions in $L_p(\mathbb{R})$.

Let p_n be a polynomial of degree n with zeros z_1, z_2, \ldots, z_n. The logarithmic derivative of p_n

$$g_n(t) = \frac{p'_n(t)}{p_n(t)} = \sum_{k=1}^{n} \frac{1}{t - z_k}$$

is called a simple partial fraction.

Let $z_k = x_k + iy_k$. V. Yu. Protasov [1] showed that if

$$\sum_{k=1}^{\infty} \frac{1}{|y_k|^{1/q}} < +\infty, \quad \frac{1}{p} + \frac{1}{q} = 1,$$

then the series

$$g_{\infty}(t) = \sum_{k=1}^{\infty} \frac{1}{t - z_k}$$

converges in $L_p(\mathbb{R})$.

In [1] the problem to find necessary and sufficient conditions for convergence of the series g_{∞} in $L_p(\mathbb{R})$ was posed. Protasov proved that if g_{∞}

2010 Mathematics Subject Classification. 28B05.
Key words and phrases. Simple partial fractions, L_p estimates.
This work was supported by RFBR (11-01-00762).
converges in $L_p(\mathbb{R})$ and all z_k lie in the angle $|z| \leq C|y|$ with a fixed C, then for all $\varepsilon > 0$ the following condition holds:

$$\sum_{k=1}^{\infty} \frac{1}{|y_k|^{1/q+\varepsilon}} < +\infty$$

Therefore, we see that the sufficient condition (1) is quite close to the necessary condition (2).

In the paper [2] we proved the following theorem.

Theorem 1. Let $p > 1$. If

$$\sum_{k=1}^{\infty} \frac{k^{p-1}}{|y_k|^{p-1}} < +\infty,$$

then the series

$$g_\infty(t) = \sum_{k=1}^{\infty} \frac{1}{t - z_k}$$

converges in $L_p(\mathbb{R})$. Conversely, if $g_\infty(t)$ converges in $L_p(\mathbb{R})$, the sequence $|y_n|$ is increasing and $|z_k| \leq C|y_k|$, then the condition (3) holds.

The proof of Theorem 1 is based on the following fact.

For any $p \geq 2$ there exists a positive constant C_p depending only on p such that the following inequality holds

$$\int_{-\infty}^{+\infty} \left(\sum_{k=1}^{n} \frac{y_k}{(t-x_k)^2 + y_k^2} \right)^p \, dt \leq C_p \sum_{k=1}^{n} \frac{k^{p-1}}{|y_k|^{p-1}}.$$

It turns out that there exists a nontrivial generalization of this result for arbitrary positive functions from arbitrary measurable space.

To be precise, let X be a measurable space with positive measure μ. Suppose that $f_k \in L_1(X, \mu) \cap L_\infty(X, \mu)$ and $f_k \geq 0$, $k = 1, 2, \ldots, n$.

We set

$$L = \max_{1 \leq k \leq n} \int_X f_k \, d\mu,$$

$$M_k = \|f_k\|_\infty.$$

The aim of the present paper is the following theorem.

Theorem 2. If $p \in (1, 2]$, then there exists C_p such that

$$\int_X \left(\sum_{k=1}^{n} f_k \right)^p \, d\mu \leq C_p L \sum_{j=1}^{n} \left(\sum_{k=j}^{n} M_k \right)^{p-1}.$$
If \(p \in [2, +\infty) \), then there exists \(C_p \) such that

\[
\left(\sum_{k=1}^{n} f_k \right)^p \leq C_p L \sum_{k=1}^{n} (k M_k)^{p-1}.
\]

To prove Theorem 2 we need the following

Lemma. For any natural \(p \) the following inequality holds

\[
\left(\sum_{k=1}^{n} f_k \right)^p \leq p! (p - 1)! L \sum_{k=1}^{n} (k M_k)^{p-1}.
\]

Proof. We multiply out and then integrate term by term:

\[
\int_X \left(\sum_{k=1}^{n} f_k \right)^p d\mu
\]

\[
= \sum_{k_1, k_2, \ldots, k_p} \int_X f_{k_1} f_{k_2} \cdots f_{k_p} d\mu
\]

\[
\leq p! \sum_{k_1 \geq k_2 \geq \cdots \geq k_p} \int_X f_{k_1} f_{k_2} \cdots f_{k_p} d\mu
\]

\[
\leq p! \sum_{k_1 \geq k_2 \geq \cdots \geq k_p} \int_X M_{k_1} M_{k_2} \cdots M_{k_{p-1}} f_{k_p} d\mu
\]

\[
= p! \sum_{k_1 \geq k_2 \geq \cdots \geq k_{p-1}} M_{k_1} M_{k_2} \cdots M_{k_{p-1}} \sum_{k_p=1}^{k_{p-1}} \int_X f_{k_p} d\mu
\]

\[
\leq p!L \sum_{k_1 \geq k_2 \geq \cdots \geq k_{p-1}} M_{k_1} M_{k_2} \cdots M_{k_{p-2}} M_{k_{p-1}} M_{k_{p-1}}.
\]

In these inequalities the indexes \(k_1, k_2, \ldots, k_p \) are varying from 1 to \(n \). We note that for \(p = 1 \) the last sum is equal to \(n \pi \). For \(p = 2 \) that sum is equal to \(2 \pi \sum_{k=1}^{n} k M_k \).

It is clear that to prove (6) it is enough to show that

\[
\sum_{k_1=1}^{n} M_{k_1} \sum_{k_2=1}^{n} M_{k_2} \cdots \sum_{k_{p-2}=1}^{n} M_{k_{p-2}} \sum_{k_{p-1}=1}^{n} M_{k_{p-1}} \sum_{k_{p-1}=1}^{n} M_{k_{p-1}} \leq (p - 1)! \sum_{k=1}^{n} (k M_k)^{p-1}.
\]

This inequality was established in the paper \([2]\). Lemma is proved. \(\square \)

Proof of Theorem 2. We have

\[
\int_X \left(\sum_{k=1}^{n} f_k \right)^p d\mu = \int_X \left(\sum_{k=1}^{n} f_k \right)^p \left(\sum_{k=1}^{n} f_k \right)^{p-1} d\mu \leq 2^{p-1} (I_1 + I_2),
\]
where
\[I_1 = \int \sum_{j=1}^{n} f_j \left(\sum_{k=1}^{j} f_k \right)^{p-1} d\mu, \]
\[I_2 = \int \sum_{j=1}^{n} f_j \left(\sum_{k=j+1}^{n} f_k \right)^{p-1} d\mu. \]

Here we have used the classical inequality \((a + b)^\alpha \leq 2^\alpha (a^\alpha + b^\alpha)\) which holds for all positive \(a, b, \alpha\).

It is easy to see that
\[I_2 \leq \int \sum_{j=1}^{n} f_j \left(\sum_{k=j+1}^{n} M_k \right)^{p-1} d\mu \leq L \sum_{j=1}^{n} \left(\sum_{k=j+1}^{n} M_k \right)^{p-1}. \]

Further we shall consider the cases \(p \leq 2\) and \(p > 2\) separately.

Case \(p \in (1, 2]\).

To get an upper estimate for \(I_1\) we use the Hölder inequality
\[I_1 \leq \sum_{j=1}^{n} \left(\int f_j^\alpha d\mu \right)^{1/\alpha} \left(\int \left(\sum_{k=1}^{j} f_k \right)^{(p-1)\beta} d\mu \right)^{1/\beta} \]
with parameters \(\alpha = 1/(2 - p), \beta = 1/(p - 1)\). Therefore,
\[I_1 \leq \sum_{j=1}^{n} \left(\int f_j^\alpha d\mu \right)^{2-p} \left(\int \left(\sum_{k=1}^{j} f_k d\mu \right)^{p-1} \right) \]
\[= \sum_{j=1}^{n} \left(\int f_j^{\alpha-1} f_j d\mu \right)^{2-p} \left(\int \left(\sum_{k=1}^{j} f_k d\mu \right)^{p-1} \right) \]
\[\leq \sum_{j=1}^{n} \left(M_j^{\alpha-1} L \right)^{2-p} (jL)^{p-1} = L \sum_{j=1}^{n} (jM_j)^{p-1}. \]

Applying Copson’s inequality ([3], Theorem 344)
\[\sum_{n=1}^{\infty} (a_n + a_{n+1} + \cdots)^{p-1} > (p - 1)^{p-1} \sum_{n=1}^{\infty} (na_n)^{p-1} \]
we get
\[I_1 \leq L \sum_{j=1}^{n} \left(\sum_{k=j}^{n} M_k \right)^{p-1}. \]

This inequality together with (7) gives us desired estimate (4) which proves Theorem 2 in case when \(p \leq 2\).
Estimates of L_p norms for sums of positive functions

Case $p \in (2, +\infty)$.

It follows from Copson’s inequality ([3], Theorem 331)

$$
\sum_{n=1}^{\infty} (a_n + a_{n+1} + \cdots)^{p-1} \leq (p-1)^{p-1} \sum_{n=1}^{\infty} (na_n)^{p-1}
$$

that

$$
I_2 \leq L(p-1)^{p-1} \sum_{j=1}^{n} j^{p-1} M_j^{p-1}.
$$

To estimate I_1 we again use the Hölder inequality

$$
I_1 \leq \sum_{j=1}^{n} L^{1/\alpha} M_j^{(\alpha-1)/\alpha} \left(\int_X \left(\sum_{k=1}^{j} f_k \right)^{m} \mu \right)^{(p-1)/m}
$$

with parameters $\alpha = m/(m+1-p)$, $\beta = m/(p-1)$ where m is the integer part of p. Further, Lemma and Hölder’s inequality yield the following estimates

$$
I_1 \leq L \sum_{j=1}^{n} M_j^{(p-1)/m} \left(\pi m!(m-1)! \sum_{k=1}^{j} (kM_k)^{m-1} \right)^{(p-1)/m}
$$

$$
= LC(m,p) \sum_{j=1}^{n} (jM_j)^{(p-1)/m} \left(\frac{1}{j} \sum_{k=1}^{j} (kM_k)^{m-1} \right)^{(p-1)/m}
$$

$$
\leq LC(m,p) \left(\sum_{j=1}^{n} (jM_j)^{\alpha_1(p-1)/m} \right)^{1/\alpha_1}
$$

$$
\times \left(\sum_{j=1}^{n} \left(\frac{1}{j} \sum_{k=1}^{j} (kM_k)^{m-1} \right)^{\beta_1(p-1)/m} \right)^{1/\beta_1}.
$$

Setting $\alpha_1 = m$, $\beta_1 = m/(m-1)$, we obtain

$$
I_1 \leq LC(m,p) \left(\sum_{j=1}^{n} (jM_j)^{p-1} \right)^{1/m}
$$

$$
\times \left(\sum_{j=1}^{n} \left(\frac{1}{j} \sum_{k=1}^{j} (kM_k)^{m-1} \right)^{(p-1)/(m-1)} \right)^{(m-1)/m}.
$$
Applying Hardy’s inequality ([3], Theorem 326)
\[\sum_{n=1}^{\infty} \left(\frac{a_1 + a_2 + \cdots + a_k}{k} \right)^s \leq \left(\frac{s}{s-1} \right)^s \sum_{k=1}^{\infty} a_k^s \]
with \(s = (p - 1)/(m - 1) \) and \(a_k = (kM_k)^{m-1} \) we see that
\[I_1 \leq LC(m, p) \left(\sum_{j=1}^{n} (jM_j)^{p-1} \right)^{1/m} \left(s^s(s-1)^{-s} \sum_{j=1}^{n} (jM_j)^{p-1} \right)^{(m-1)/m} \]
\[= LC_1(m, p) \sum_{j=1}^{n} (jM_j)^{p-1}. \]
This estimate together with (8) proves (5). Theorem 2 is proved. \(\square \)

Let us remark that the inequalities (4) and (5) are sharp up to some absolute constant depending on \(p \) only. This can be easily seen by setting \(f_j \equiv 1 \) on \(X \). Other examples can be constructed as follows: \(X = \mathbb{R} \) and
\[f_k(t) = \frac{y_k}{(t-x_k)^2 + y_k^2}. \]
In case when \(|y_k| \) is increasing sequence, it was proved in the paper [2] that the sign \(\leq \) in the inequalities (4) and (5) can replaced by \(\geq \) with some other absolute constant \(c_p > 0 \) depending on \(p \) only.

Acknowledgement. I would like to thank the Organizers of the XVIth Conference on Analytic Functions and Related Topics (Chełm, Poland, 2011) for their warm hospitality.

References

Ilgiz Kayumov
Kazan Federal University
Russia
e-mail: ikayumov@ksu.ru

Received September 18, 2011