PIOTR PIKUTA and WITOLD RZYMOWSKI

Plane convex sets via distributions

Abstract. We will establish the correspondence between convex compact subsets of \mathbb{R}^2 and 2π–periodic distributions in \mathbb{R}. We also give the necessary and sufficient condition for the positively homogeneous extension $\tilde{u} : \mathbb{R}^n \to \mathbb{R}$ of $u : S^{n-1} \to \mathbb{R}$ to be a convex function.

1. Introduction. We say that a 2π–periodic function $p : \mathbb{R} \to \mathbb{R}$ is a support function if there exists a convex compact set $C \subset \mathbb{R}^2$ such that

$$p(t) = \max_{x \in C} \langle x, e(t) \rangle, \quad t \in \mathbb{R},$$

where $e(t) = (\cos t, \sin t)$, $t \in \mathbb{R}$ and $\langle x, y \rangle$ stands for the scalar product of vectors $x, y \in \mathbb{R}^2$.

We refer to Rademacher’s test for convexity (see [7], and [1, p. 28]) as a necessary and sufficient condition for p to be a support function. There are also other tests, one of them was proposed by Gelfond ([5, p. 132]), and another one by Firey ([3, p. 239, Lemma]).

2000 Mathematics Subject Classification. 52A10, 46F99.

Key words and phrases. Support functions, distributions, plane convex sets.
Gelfond’s test. A 2π-periodic function $p : \mathbb{R} \to \mathbb{R}$ is a support function iff
\[
\det\begin{bmatrix}
cos t_1 & \sin t_1 & p(t_1) \\
cos t_2 & \sin t_2 & p(t_2) \\
cos t_3 & \sin t_3 & p(t_3)
\end{bmatrix} \geq 0
\]
for all $0 \leq t_1 \leq t_2 \leq t_3 \leq 2\pi$, such that $t_2 - t_1 \leq \pi$ and $t_3 - t_2 \leq \pi$.

Let
\[S^{n-1} = \{ x \in \mathbb{R}^n : \|x\| = 1 \} . \]
We say that $p : S^{n-1} \to \mathbb{R}$ is a support function if there exists a convex compact set $C \subset \mathbb{R}^n$ such that
\[p(u) = \max_{x \in C} \langle x, u \rangle , \quad u \in S^{n-1} . \]

Firey’s test. Let $\{a_1, a_2, \ldots, a_n\}$ be a fixed orthonormal basis in \mathbb{R}^n. A function $p : S^{n-1} \to \mathbb{R}$ is a support function iff
\[
\det\begin{bmatrix}
\langle u_1, a_1 \rangle & \ldots & \langle u_1, a_n \rangle & p(u_1) \\
\ldots & \ldots & \ldots & \ldots \\
\langle u_n, a_1 \rangle & \ldots & \langle u_n, a_n \rangle & p(u_n) \\
\langle u_{n+1}, a_1 \rangle & \ldots & \langle u_{n+1}, a_n \rangle & p(u_{n+1})
\end{bmatrix}
\times \det\begin{bmatrix}
\langle u_1, a_1 \rangle & \ldots & \langle u_1, a_n \rangle \\
\ldots & \ldots & \ldots & \ldots \\
\langle u_n, a_1 \rangle & \ldots & \langle u_n, a_n \rangle
\end{bmatrix} \leq 0
\]
for all $u_1, \ldots, u_{n+1} \in S^{n-1}$, such that $u_{n+1} = \sum_{i=1}^{n} t_i u_i$, $t_i \geq 0$, $i = 1, 2, \ldots, n$.

In this paper we propose another test for convexity involving distributional derivatives of the function p.

2. Main result. In this section we will present the main result of the paper.

The symbol $D'(\mathbb{R})$ will stand for the space of all distributions in \mathbb{R} and L^1 will denote the Lebesgue measure in \mathbb{R}. Distribution theory will be the main tool used in the sequel.

Theorem 1. Let $C \subset \mathbb{R}^2$ be a nonempty convex compact subset of \mathbb{R}^2. Define $p_C : \mathbb{R} \to \mathbb{R}$,
\[p_C(t) = \max_{x \in C} \langle x, e(t) \rangle , \]
where $e(t) = (\cos t, \sin t)$, $t \in \mathbb{R}$. Under these assumptions, the distribution $p_C + p_C''$ is a 2π-periodic non-negative Radon measure in \mathbb{R}.
Theorem 2. Given a 2π-periodic non-negative Radon measure ϱ in \mathbb{R}, satisfying the condition
\[
\int_0^{2\pi} e(t) \varrho(dt) = 0.
\]
Let $p \in D'(\mathbb{R})$ be a distributional solution of the differential equation
\[
(1) \quad p + p'' = \varrho.
\]
Under these assumptions
(a) p is a 2π-periodic Lipschitz function,
(b) for each $t \in \mathbb{R}$,
\[
p(t) = \max_{x \in C_p} \langle x, e(t) \rangle
\]
where C_p is the closure of the convex hull of all points of the form
\[
p(t)e(t) + p'(t)e'(t),
\]
(c) if $q \in D'(\mathbb{R})$ is another solution of (1) then
\[
C_q = C_p + w
\]
for some $w \in \mathbb{R}^2$.

Theorems 1 and 2 establish a “local” version of the Rademacher–Gelfond’s test for convexity. Proofs of Theorem 1 and Theorem 2 will be presented in sections 3 and 4.

3. From set to measure.

A. Let $C \subset \mathbb{R}^2$ be a nonempty convex compact set. Define
\[
u(y) = \max_{x \in C} \langle x, y \rangle, \; y \in \mathbb{R}^2.
\]
Clearly
\[
p_C(t) = \nu(e(t)), \; t \in \mathbb{R}.
\]
Since ν is Lipschitz and positively homogeneous, there exists a set $E \subset \mathbb{R}$ such that $L^1(\mathbb{R} \setminus E) = 0$ and for each $t \in E$, ν has a usual derivative ν' at $e(t)$ and $e(t)$ is a Lebesgue point of ν'. Indeed, if $\nu'(e(t))$ does not exist then $\nu'(\lambda e(t))$ does not exist for all $\lambda > 0$. Therefore, if the measurable set $\{t \in \mathbb{R} : \nu'(e(t)) \text{ does not exist}\}$ has a positive measure, then the set $\{x \in \mathbb{R}^2 : \nu'(x) \text{ does not exist}\}$ has a positive measure which contradicts Rademacher’s theorem.
Moreover,
\begin{equation}
\langle u'(e(t)), e(t) \rangle = u(e(t)), \quad t \in E.
\end{equation}

\textbf{B.} Let us fix \(\psi \in C_0^\infty(\mathbb{R}^2) \) with the following properties
\begin{align*}
\psi & \geq 0, \\
\text{supp } \psi & \subset B[0, 1] = \{ x \in \mathbb{R}^2 : \| x \| \leq 1 \}, \\
\int_{\mathbb{R}^2} \psi(x) \, dx & = 1.
\end{align*}
Next, for each \(\varepsilon > 0, \ x \in \mathbb{R}^2 \) and \(t \in \mathbb{R} \), define
\begin{align*}
\psi_\varepsilon(x) & = \frac{1}{\varepsilon^2} \psi\left(\frac{x}{\varepsilon}\right) \\
u_\varepsilon(x) & = \int_{\mathbb{R}^2} u(x - y) \psi_\varepsilon(y) \, dy \\
p_\varepsilon(t) & = u_\varepsilon(e(t)).
\end{align*}
Obviously, \(u_\varepsilon \) is convex, both \(u_\varepsilon \) and \(p_\varepsilon \) are \(C^\infty \) functions and \(p_\varepsilon \to p_C \) uniformly in \(\mathbb{R} \). Since \(e'' = -e \) we have
\begin{align*}
p''_\varepsilon(t) & = \langle u''_\varepsilon(e(t)) \, e'(t), e'(t) \rangle - \langle u'_\varepsilon(e(t)), e(t) \rangle, \quad t \in \mathbb{R}.
\end{align*}
Consequently, for each \(\varphi \in C_0^\infty(\mathbb{R}) \)
\begin{align*}
\langle p_\varepsilon + p''_\varepsilon, \varphi \rangle_{L^2} & = \int_\mathbb{R} (p_\varepsilon(t) + p''_\varepsilon(t)) \varphi(t) \, dt \\
& = \int_\mathbb{R} \langle u''_\varepsilon(e(t)) \, e'(t), e'(t) \rangle \varphi(t) \, dt \\
& \quad + \int_\mathbb{R} (p_\varepsilon(t) - \langle u'_\varepsilon(e(t)), e(t) \rangle) \varphi(t) \, dt.
\end{align*}
By (2), see e.g. [2, Theorem 1 (iv), (v), p. 123],
\begin{align*}
\lim_{\varepsilon \downarrow 0} \int_\mathbb{R} (p_\varepsilon(t) - \langle u'_\varepsilon(e(t)), e(t) \rangle) \varphi(t) \, dt = 0.
\end{align*}
Thus, when \(\varphi \geq 0 \),
\begin{equation}
\langle p_C + p''_C, \varphi \rangle_{L^2} = \lim_{\varepsilon \downarrow 0} \langle p_\varepsilon + p''_\varepsilon, \varphi \rangle_{L^2} \geq 0.
\end{equation}
C. Clearly, $p_C + p_C''$ is 2π–periodic. It follows from (3), see e.g. [6, Theorems 2.1.7, 2.1.8, 2.1.9], that $p_C + p_C''$ is a non-negative Radon measure in \mathbb{R}.

4. From measure to set.

D. Every solution to (1) has the form (see e.g. [4, p. 28])

$$p(t) = a \cos t + b \sin t + S(t),$$

where $a, b \in \mathbb{R}$ and

$$S(t) = \int_0^t \sin (t - s) \varrho(ds), \ t \in \mathbb{R}.$$ It is easy to verify that

$$\langle S', \varphi \rangle_{L^2} = \langle C, \varphi \rangle_{L^2}, \ \varphi \in C_0^\infty(\mathbb{R}),$$

where

$$C(t) = \int_0^t \cos (t - s) \varrho(ds), \ t \in \mathbb{R}.$$ Therefore, see [2, Theorem 5, p. 131], S is Lipschitz.

E. Let p be a solution to (1). Denote by E the set of all $t \in \mathbb{R}$ for which the usual derivative p' exists. Let

$$z(t) \overset{\text{def}}{=} p(t)e(t) + p'(t)e'(t), \ t \in E,$$

$$Z = \{z(t) : t \in E\}.$$ We claim that

$$p(\tau) = \sup_{t \in E} \langle z(t), e(\tau) \rangle, \ \tau \in E.$$ Indeed, for $t \in E$, we have

$$\langle z(t), e(\tau) \rangle = \langle p(t)e(t) + p'(t)e'(t), e(\tau) \rangle$$

and

$$\lim_{t \to \tau} \langle z(t), e(\tau) \rangle = p(\tau).$$ On the other hand, in the sense of distribution theory,

$$\frac{d}{dt} \langle z(t), e(\tau) \rangle = \langle p'e + pe' + p''e + p'e'', e(\tau) \rangle$$

$$= (p + p'') \langle e'(t), e(\tau) \rangle = q \sin (\tau - t).$$
It follows from [6, Theorem 4.1.6], that \(\langle z(t), e(\tau) \rangle \) is nondecreasing in \((\tau - \pi, \tau)\) and nonincreasing in \((\tau, \tau + \pi)\). Consequently, since \(p \) is \(2\pi\)-periodic, we have
\[
p(t) = \sup_{t \in E} \langle z(t), e(\tau) \rangle, \quad \tau \in E,
\]
as claimed.

F. Let \(C_p \) be the closure of the convex hull of \(Z \). Obviously,
\[
p(\tau) = \max_{x \in C_p} \langle x, e(\tau) \rangle, \quad \tau \in E.
\]
Since \(p \) and \(e \) are continuous and \(E \) is dense in \(\mathbb{R} \), we have,
\[
p(t) = \max_{x \in C_p} \langle x, e(t) \rangle, \quad t \in \mathbb{R}.
\]

5. Convex extension
In this section a simple application of Theorem 1 and Theorem 2 will be given. We will prove the necessary and sufficient condition for the positively homogeneous extension \(\tilde{u} : \mathbb{R}^n \to \mathbb{R} \) of \(u : S^{n-1} \to \mathbb{R} \) to be a convex function.

Let \(S^{n-1} = \{ x \in \mathbb{R}^n : \|x\| = 1 \} \) and let \(u : S^{n-1} \to \mathbb{R} \) be a function. For each \(a, b \in S^{n-1} \) satisfying \(\langle a, b \rangle = 0 \), define \(e_{a,b} : \mathbb{R} \to S^{n-1}, u_{a,b} : \mathbb{R} \to \mathbb{R} \) and \(\tilde{u} : \mathbb{R}^n \to \mathbb{R} \)
\[
e_{a,b}(t) = a \cos t + b \sin t,
\]
\[
u(a,b)(t) = u(e_{a,b}(t)),
\]
\[
\tilde{u}(x) = \begin{cases} \|x\| \cdot u \left(\frac{x}{\|x\|} \right), & x \neq 0 \\ 0, & x=0. \end{cases}
\]
Recall that \(u : \mathbb{R}^n \to \mathbb{R} \) is positively homogeneous if
\[
u(\alpha x) = \alpha \cdot u(x)
\]
for all \(x \in \mathbb{R}^n \) and \(\alpha > 0 \).

Theorem 3. If \(u : \mathbb{R}^n \to \mathbb{R} \) is convex and positively homogeneous then \(u_{a,b} + u''_{a,b} \) is a \(2\pi\)-periodic, non-negative Radon measure on \(\mathbb{R} \) for all \(a, b \in S^{n-1} \), where \(\langle a, b \rangle = 0 \).

Proof. Fix \(a, b \in S^{n-1}, \langle a, b \rangle = 0 \). Let \(v : \mathbb{R}^2 \to \mathbb{R}, \)
\[
v(x_1, x_2) = u(x_1 a + x_2 b)\]
be a restriction of u to $\text{lin}\{a, b\}$. Obviously, v is convex. The set

$$C = \{x \in \mathbb{R}^2 : \forall y \in \mathbb{R}^2 \langle x, y \rangle \leq v(y)\}$$

is a convex compact subset of \mathbb{R}^2 and

$$v(y) = \max_{x \in C} \langle x, y \rangle$$

for all $y \in \mathbb{R}^2$, see e.g. [8, Corollary 13.2.1]. Consider

$$u_{a,b}(t) = u(e_{a,b}(t)) = v(e(t))$$

and apply Theorem 1 to show that $u_{a,b} + u''_{a,b}$ is a 2π–periodic, non-negative Radon measure on \mathbb{R}. □

Theorem 4. If $u : S^{n-1} \to \mathbb{R}$ is continuous and $u_{a,b} + u''_{a,b}$ is a 2π–periodic, non-negative Radon measure on \mathbb{R}, satisfying

$$\int_0^{2\pi} e_{a,b}(t) \left(u_{a,b} + u''_{a,b}\right)(dt) = 0$$

for all $a, b \in S^{n-1}$, where $\langle a, b \rangle = 0$, then $\tilde{u} : \mathbb{R}^n \to \mathbb{R}$ is convex.

Proof. Let $z, y \in \mathbb{R}^n$ be fixed. There exist $a, b \in S^{n-1}$, $\langle a, b \rangle = 0$, such that $z, y \in \text{lin}\{a, b\}$. Applying Theorem 2 to the function $u_{a,b}$, we have

$$\tilde{u}(z + y) = \|z + y\| \max_{x \in C} \left\langle x, \frac{z + y}{\|z + y\|} \right\rangle \\
\leq \|z\| \max_{x \in C} \left\langle x, \frac{z}{\|z\|} \right\rangle + \|y\| \max_{x \in C} \left\langle x, \frac{y}{\|y\|} \right\rangle \\
= \tilde{u}(z) + \tilde{u}(y).$$

for some convex compact set $C \subset \text{lin}\{a, b\}$. Therefore \tilde{u} is convex. □

References

Instytut Matematyki UMCS
pl. M. Curie-Sklodowskiej 1
20-031 Lublin, Poland

e-mail: ppikuta@golem.umcs.lublin.pl
e-mail: witrz@golem.umcs.lublin.pl

Received April 14, 2003