\textbf{\textit{A}-manifolds on a principal torus bundle over an almost Hodge \textit{A}-manifold base}

Abstract. An \textit{A}-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies $\nabla_X \text{Ric}(X,X) = 0$. This condition generalizes the Einstein condition. We construct new examples of \textit{A}-manifolds on r-torus bundles over a base which is a product of almost Hodge \textit{A}-manifolds.

1. Introduction. One of the most extensively studied objects in mathematics and physics are Einstein manifolds (see for example [1]), i.e. manifolds whose Ricci tensor is a constant multiple of the metric tensor. In his work [2] A. Gray defined a condition which generalizes the concept of an Einstein manifold. This condition states that the Ricci tensor Ric of the Riemannian manifold (M,g) is cyclic parallel, i.e.

$$\nabla_X \text{Ric}(Y,Z) + \nabla_Y \text{Ric}(Z,X) + \nabla_Z \text{Ric}(X,Y) = 0,$$

where ∇ denotes the Levi-Civita connection of the metric g and X,Y,Z are arbitrary vector fields on M. A Riemannian manifold satisfying this condition is called an \textit{A}-manifold. It is obvious that if the Ricci tensor of (M,g) is parallel, then it satisfies the above condition. On the other hand, if Ric is cyclic-parallel, but not parallel, then we call (M,g) a strict \textit{A}-manifold. A. Gray gave in [2] the first example of such strict \textit{A}-manifold, which was the sphere S^3 with appropriately defined homogeneous metric.

2010 \textit{Mathematics Subject Classification.} Primary 53C25.

\textit{Key words and phrases.} \textit{A}-manifold, cyclic parallel Ricci, torus bundle, Einstein-like manifold, Killing tensor.

The author would like to thank Prof. W. Jelonek for helping with the present paper.
The first example of a non-homogeneous \mathcal{A}-manifold was given in [3]. This example is a S^1-bundle over some Kähler–Einstein manifold. Recently Z. Tang and W. Yan in [12] obtained some new examples of \mathcal{A}-manifolds as focal sets of isoparametric hypersurfaces in spheres.

The result from [3] was generalized in [4] to K-contact manifolds. Namely, over every almost Hodge \mathcal{A}-manifold with J-invariant Ricci tensor we can construct a Riemannian metric such that the total space of the bundle is an \mathcal{A}-manifold. In the present paper we take a next step in the generalization process and we prove that there exists an \mathcal{A}-manifold structure on every r-torus bundle over product of almost Hodge \mathcal{A}-manifolds. Our result and that of Jelonek are based on the existence of almost Hodge \mathcal{A}-manifolds, which was proven in [5].

2. Conformal Killing tensors. Let (M, g) be any Riemannian manifold. We call a symmetric tensor field of type $(0, 2)$ on M a conformal Killing tensor field iff there exists a 1-form P such that for any $X \in \Gamma(TM)$

\[\nabla_X K(X, X) = P(X) g(X, X), \]

where ∇ is the Levi-Civita connection of g. The above condition is clearly equivalent to the following

\[C_{X,Y,Z} \nabla_X K(Y, Z) = C_{X,Y,Z} P(X) g(Y, Z) \]

for all $X, Y, Z \in \Gamma(TM)$ where $C_{X,Y,Z}$ denotes the cyclic sum over X, Y, Z. It is easy to prove that the 1-form P is given by

\[P(X) = \frac{1}{n+2} (2 \text{div} K(X) + \text{tr} K(X)), \]

where $X \in \Gamma(TM)$ and $\text{div} S$ and $\text{tr} S$ are the divergence and trace of the tensor field S with respect to g.

If the 1-form P vanishes, then we call K a Killing tensor. Of particular interest in this work is a situation when the Ricci tensor of the metric g is a Killing tensor. We call such a manifold an \mathcal{A}-manifold. In the more general situation, when the Ricci tensor is a conformal tensor we call (M, g) a AC^\perp-manifold.

We will use the following easy property of conformal Killing tensors.

Proposition 1. Suppose that (M, g) is a Riemannian product of (M_i, g_i), $i = 1, 2$. Moreover, let K_i be conformal tensors on (M_i, g_i). Then $K = K_1 + K_2$ is a conformal tensor for (M, g).

A conformal Killing form or a twistor form is a differential p-form φ on (M, g) satisfying the following equation

\[\nabla_X \varphi = \frac{1}{p+1} X \lrcorner \ d\varphi - \frac{1}{n-p+1} X \wedge \delta \varphi. \]
An extensive description of conformal Killing forms can be found in a series of articles by Semmelmann and Moroianu ([11],[7]).

It is known that if φ is a co-closed conformal Killing form (also called a $Killing form$), then the $(0,2)$-tensor field K_φ defined by

$$K_\varphi(X,Y) = g(X \lrcorner \varphi, Y \lrcorner \varphi)$$

is a Killing tensor.

The following theorem generalizes the above observation. After proving this fact the author found that it was known in physics literature.

Theorem 2. Let φ and ψ be conformal Killing p-forms. Then the tensor field $K_{\varphi,\psi}$ defined by

$$K_{\varphi,\psi} = g(X \lrcorner \varphi, Y \lrcorner \psi) + g(Y \lrcorner \varphi, X \lrcorner \psi)$$

is a conformal Killing tensor field.

Proof. The proof is straightforward. Let X be any vector field and φ, ψ conformal Killing p-forms. We will check that $K_{\varphi,\psi}$ as defined above satisfies (1).

$$\nabla_X K_{\varphi,\psi}(X,X) = 2X (g(X \lrcorner \varphi, X \lrcorner \psi)) - 2g(\nabla_X X \lrcorner \varphi, X \lrcorner \psi) - 2g(\nabla_X X \lrcorner \psi, X \lrcorner \varphi)$$

$$= 2g(\nabla_X X \lrcorner \varphi, X \lrcorner \psi) + 2g(X \lrcorner \varphi, \nabla_X (X \lrcorner \psi)) - 2g(\nabla_X X \lrcorner \psi, X \lrcorner \varphi)$$

$$= 2g(X \lrcorner \nabla_X \varphi, X \lrcorner \psi) + 2g(X \lrcorner \varphi, X \lrcorner \nabla_X \psi).$$

From the fact that φ satisfies (3) we have

$$g(X \lrcorner \nabla_X \varphi, X \lrcorner \psi) = \frac{1}{p+1} g(X \lrcorner (X \lrcorner d\varphi), X \lrcorner \psi)$$

$$= - \frac{1}{n-p+1} g(X \lrcorner (X \lrcorner \delta \varphi), X \lrcorner \psi)$$

$$= - \frac{1}{n-p+1} (g(X,X)g(\delta \varphi, X \lrcorner \psi) - g(X \wedge (X \lrcorner \delta \varphi), X \lrcorner \psi))$$

$$= - \frac{1}{n-p+1} g(X,X)g(\delta \varphi, X \lrcorner \psi).$$

The same is valid for ψ with

$$g(X \lrcorner \nabla_X \psi, X \lrcorner \varphi) = - \frac{1}{n-p+1} g(X,X)g(\delta \psi, X \lrcorner \varphi).$$

Hence we have

$$\nabla_X K_{\varphi,\psi}(X,X) = - \frac{2}{n-p+1} g(X,X) (g(\delta \varphi, X \lrcorner \psi) + g(\delta \psi, X \lrcorner \varphi)). \blacksquare$$
3. Torus bundles. Let \((M, h)\) be a Riemannian manifold and suppose that \(\beta_i\) are closed 2-forms on \(M\) for \(i = 1, \ldots, r\) such that their cohomology classes \([\beta_i]\) are integral. In [6] it was proven that to each such cohomology class there corresponds a principal circle bundle \(p_i : P_i \to M\) with a connection form \(\theta_i\) such that

\[
d\theta_i = 2\pi p_i^* \beta_i.
\]

Taking the Whitney sum of bundles \((p_i, P_i, M)\), we obtain a principal \(r\)-torus bundle \(p : P \to M\) classified by cohomology classes of \(\beta_i\), \(i = 1, \ldots, r\). The connection form \(\theta\) is a vector valued 1-form with coefficients \(\theta_i\), where \(\theta_i\) are as before. For each connection form \(\theta_i\) we define a vector field \(\xi^i\) by \(\theta_i(\xi^i) = 1\). This vector field is just the fundamental vector field for \(\theta_i\) corresponding to 1 in the Lie algebra of \(i\)-th \(S^1\)-factor of the bundle \((p, P, M)\).

It is easy to check that the tensor field \(g\) given by

\[
g = \sum_{i,j=1}^{r} b_{ij} \theta_i \otimes \theta_j + p^* h
\]

is a Riemannian metric on \(P\) if \([b_{ij}]_{i,j=1}^r\) is some symmetric, positive definite \(r \times r\) matrix with real coefficients. This Riemannian metric makes the projection \(p : (P, g) \to (M, h)\) a Riemannian submersion (see [8]).

Lemma 3. Each vector field \(\xi^i\) for \(i = 1, \ldots, r\) is Killing with respect to the metric \(g\). Moreover, define a tensor field \(T_i\) of type \((1, 1)\) by \(T_i X = \nabla_X \xi^i\) for \(X \in \Gamma (TP)\), where \(\nabla\) is the Levi-Civita connection of \(g\). Then we have

\[
T_i \xi^j = 0, \quad L_{\xi^i} T_j = 0,
\]

for \(i \neq j\).

Proof. To prove that \(\xi^s\) is a Killing vector field for \(s = 1, \ldots, r\) observe that

\[
L_{\xi^s} g = \sum_{i,j=1}^{r} b_{ij} ((L_{\xi^s} \theta_i) \otimes \theta_j + \theta_i \otimes (L_{\xi^s} \theta_j)).
\]

Hence we only have to check that \(L_{\xi^s} \theta_i = 0\) for any \(i, s = 1, \ldots, r\). Using Cartan’s magic formula for Lie derivative we have

\[
L_{\xi^s} \theta_i = d(\theta_i(\xi^s)) + \xi^s \lrcorner d\theta_i
\]

and it is immediate that the first term is zero, since \(\theta_i(\xi^s) = \delta^s_i\), where \(\delta^s_i\) is the Kronecker delta. For the second term we have

\[
d\theta_i(\xi^s, X) = \xi^s(\theta_i(X)) - X(\theta_i(\xi^s)) - \theta_i([\xi^s, X]),
\]

where \(X\) is arbitrary. We will consider two cases, namely when \(X\) is a horizontal or vertical vector field. In both cases the first two components vanish, hence we only have to look at the third. In the first case we notice that \(\{\xi^s, X\}\) is a horizontal vector field, since \(\xi^s\) is a fundamental vector field.
on P. This gives us the vanishing of $\xi^s \cdot d\theta_i$ on horizontal vector fields. When X is vertical we can take it to be just ξ^k and we immediately see that $[\xi^s, \xi^k] = 0$ since the fields ξ^j come from the action of a torus on P.

For the second part of the lemma observe that $g(\xi^i, \xi^j)$ is constant. For any vector field X this gives us

$$0 = Xg(\xi^i, \xi^j) = g(\nabla_X \xi^i, \xi^j) + g(\xi^i, \nabla_X \xi^j) = -g(X, \nabla_{\xi^i} \xi^j) - g(\nabla_{\xi^i} \xi^j, X).$$

Now, since $[\xi^i, \xi^j] = 0$ we have $\nabla_{\xi^i} \xi^j = \nabla_{\xi^j} \xi^i$ which proves that $T_i \xi^j = 0$.

Recall that for any Killing vector field we have $L_\xi \nabla X Y = \nabla_{L_\xi X} Y + \nabla_X (L_\xi Y)$, where X and Y are arbitrary vector fields. In our situation we have

$$(L_\xi T_j) X = L_\xi (T_j X) - T_j (L_\xi X) = \nabla_{[\xi^i, X]} \xi^j + \nabla_X [\xi^i, \xi^j] - \nabla_{[\xi^i, X]} \xi^j = 0,$$

which ends the proof. □

Hence tensor fields T_i are horizontal, i.e. for each i there exists a tensor field \tilde{T}_i on M such that $p_* \circ T_i = \tilde{T}_i \circ p_*$.

We now compute the O’Neill tensors ([8]) of the Riemannian submersion $p : P \to M$.

Proposition 4. The O’Neill tensor T is zero. The O’Neill tensor A is given by

$$A_{EF} = \sum_{i,j=1}^r \sum_{i,j=1}^r b^{ij} (g(E, T_i F) \xi^j + g(\xi^i, F) T_j E),$$

where b^{ij} are the coefficients of the inverse matrix of $[b_{ij}]_{i,j=1}^r$ and $E, F \in \Gamma(TP)$.

Observe that from the fact that $\theta_i(\xi^i) = 1$ for $E \in \Gamma(TP)$ we get that

$$g(\xi^i, E) = \sum_{j=1}^r b_{ij} \theta_j(E)$$

hence

$$\theta_j(E) = \sum_{i=1}^r b^{ji} g(\xi^i, E).$$

Taking the exterior differential, we get

$$d\theta_j(E, F) = 2 \sum_{i=1}^r b^{ji} g(T_i E, F),$$

where $E, F \in \Gamma(TP)$.
Using formulae from [1] Chapter 9 and the fact that the fibre of the Riemannian submersion \((p, P, M)\) is totally geodesic and flat, we see that the Ricci tensor on the total space of Riemannian submersion is given by

\[
\text{Ric}(U, V) = \sum_{i=1}^{m} g(A_{E_i} U, A_{E_i} V),
\]

\[
\text{Ric}(X, U) = -\sum_{i=1}^{m} g((\nabla_{E_i} A) E_i X, U),
\]

\[
\text{Ric}(X, Y) = \text{Ric}_M(X, Y) - 2 \sum_{i=1}^{m} g(A_X E_i, A_Y E_i).
\]

Here \(E_i\) is an element of the orthonormal basis of the horizontal distribution \(\mathcal{H}\), \(\text{Ric}_M\) is a lift of the Ricci tensor of the base \((M, h)\), \(X, Y\) are horizontal vector fields and \(U, V\) any vertical vector fields. Using the formula (7) for the O’Neill tensor \(A\) we can compute all components of the Ricci tensor \(\text{Ric}\).

We obtain

\[
\text{Ric}(U, V) = \sum_{i=1}^{m} g \left(\sum_{s,t=1}^{r} b_{st} g(\xi^s, U) T_s E_i, \sum_{k,l=1}^{r} b_{kl} g(\xi^k, V) T_l E_i \right),
\]

\[
\text{Ric}(X, Y) = \text{Ric}_M(X, Y) - \frac{1}{2} \sum_{s,t=1}^{r} b_{st} g(T_s X, T_t Y).
\]

As for the value of \(\text{Ric}(X, U)\) we compute the covariant derivative

\[
(\nabla_{E_i} A) E_i X = \nabla_{E_i} \left(\sum_{s,t=1}^{r} b_{st} g(E_i, T_s X) \xi^t \right) - \sum_{s,t=1}^{r} b_{st} g(\nabla_{E_i} E_i, T_s X) \xi^t
\]

\[- \sum_{s,t=1}^{r} b_{st} g(E_i, T_s \nabla_{E_i} X) \xi^t + g(\xi^s, \nabla_{E_i} X) T_l E_i \]

\[= \sum_{s,t=1}^{r} b_{st} g(E_i, (\nabla_{E_i} T_s) X) \xi^t,
\]

where we used the fact that \(g(\xi^s, \nabla_{E_i} X) = -g(T_s E_i, X)\) which follows from \(A_X\) being anti-symmetric with respect to \(g\) for any horizontal vector field \(X\). Now since tensors \(T_s\) are anti-symmetric with respect to \(g\) so is \(\nabla_X T_s\), hence

\[
(\nabla_{E_i} A) E_i X = \sum_{s,t=1}^{r} b_{st} g((\nabla_{E_i} T_s) E_i, X) \xi^t \sum_{t=1}^{r} \delta d\theta_t(X) \xi^t.
\]
As a result we have
\[\text{Ric}(X, U) = \sum_{t=1}^{r} \delta d\theta_t(X) g(\xi^t, U). \]

4. Torus bundle over a product of almost Hodge manifolds. Let
\((M, g, J)\) be an almost Hermitian manifold, where \(J\) denotes the almost
complex structure, i.e. a type \((1,1)\) tensor field such that \(J^2 = -\text{id}_{TM}\) and
\(g\) is any compatible metric satisfying \(g(X, Y) = g(JX, JY)\) for any vector
fields \(X\) and \(Y\) on \(M\). We denote by \(\omega\) the so-called Kähler form which is a
2-form defined by \(\omega(X, Y) = g(JX, Y)\). If \(\omega\) is closed we call the \((M, g, J)\)
an almost Kähler manifold. Moreover, one can prove that in this case the
Kähler form is also co-closed. If additionally \(J\) is integrable, then \((M, g, J)\) is
a Kähler manifold. In [14] the author constructed examples of \(\mathcal{A}\)-manifolds
over a base which is a product of Kähler–Einstein manifolds. In particular
it has parallel Ricci tensor and is a degenerate case of an \(\mathcal{A}\)-manifold, so this
paper is a generalization of the former. Moreover, any Kähler \(\mathcal{A}\)-manifold
has parallel Ricci tensor by a result of Sekigawa and Vanhecke [10].

In the more general situation of almost Kähler metrics the situation is
different. In [5] Jelonek constructed a strictly almost Kähler \(\mathcal{A}\)-manifold
with non-parallel Ricci tensor. Moreover, the Kähler form of such a mani-
fold has a useful property. It is a constant multiple of some differential
2-form that belongs to an integral cohomology class i.e. a differential form
in \(H^2(M; \mathbb{Z})\). An almost Kähler manifold whose Kähler form satisfies this
condition is called an almost Hodge manifold.

Returning to our construction, suppose that \((M_i, g_i, J_i)\), \(i = 1, \ldots, n\) are
almost Hodge manifolds such that Kähler forms \(\omega_i\) are constant multiples of
2-forms \(\alpha_i\) and their cohomology classes are integral, i.e. \([\alpha_i] \in H^2(M_i; \mathbb{Z})\).
Denote by \((M, g, J)\) the product manifold with the product metric and
product almost complex structure and let \(pr_i\) be the projection on the \(i\)-th
factor. From our earlier discussion we know that there exists a principal
\(r\)-torus bundle classified by the forms \(\beta_1, \ldots, \beta_r\) given by
\[\beta_j = \sum_{i=1}^{n} a_{ji} pr_i^* \alpha_i, \]
where \([a_{ji}]\) is some \(r \times n\) matrix with integer coefficients. By (4) the coefficients \(\theta_j\) of the connection form of \((p, P, M)\) satisfy
\[d\theta_j = 2\pi p^* \beta_j = 2\pi \sum_{i=1}^{n} a_{ji} p^* (pr_i^* \alpha_i) \]
for every \(j = 1, \ldots, r\).
Since α_i’s and Kähler forms ω_i of (M_i, g_i, J_i) are connected by $\omega_i = c_i \alpha_i$ for some constants c_i, $i = 1, \ldots, n$ we have

(14) \[d\theta_j = 2\pi \sum_{i=1}^n \frac{a_{ji}}{c_i} \omega_i^*, \]

where by ω_i^* we denote the 2-form obtained from lifting ω_i to P. Comparing this with (8), we get a formula for each tensor field T_j

(15) \[\tilde{T}_i X = \pi \sum_{j=1}^r b_{ij} \sum_{k=1}^n \frac{a_{jk}}{c_k} J_k^E X \]

where J_k^E is the almost complex structure tensor of (M_k, g_k, J_k) lifted to the product manifold M.

We will now compute the Ricci tensor of (P, g) using (9)–(11), computations that follows those formulas and above observations. We begin with

\[
\text{Ric}(U, V) = \pi^2 \sum_{i=1}^m \chi \left(\sum_{s=1}^r \sum_{k=1}^n \frac{a_{sk}}{c_k} J_k^E U \sum_{l=1}^r \sum_{h=1}^n \frac{a_{lh}}{c_h} J_h^E V \right)
\]

(16) \[= \pi^2 \sum_{s,l=1}^r g(\xi^s, U)g(\xi^l, V) \sum_{i=1}^m h \left(\sum_{k=1}^n \frac{a_{sk}}{c_k} J_k^E U \sum_{h=1}^n \frac{a_{lh}}{c_h} J_h^E V \right) \]

We used the fact that for $k \neq h$ images of J_k and J_h are orthogonal. It is easy to see that

\[
\sum_{i=1}^m \sum_{k=1}^n g_k \left(\frac{a_{sk}}{c_k} J_k E_i, \frac{a_{lk}}{c_k} J_k E_i \right)
\]

are constants for each $s, l = 1, \ldots, r$. Hence the Ricci tensor of (P, g) on vertical vector fields is a symmetrized product of Killing vector fields.

Next, since the Kähler form of each almost Hodge manifold (M_k, g_k, J_k) is co-closed we see from (14) that

(17) \[\text{Ric}(X, U) = 0 \]

for any horizontal vector field X and vertical vector field U.

The last component of the Ricci tensor of (P, g) is the horizontal one. First observe that Ric_M is the Ricci tensor of the product metric $h = g_1 + \ldots + g_n$ and Ricci tensors Ric_k are J_k-invariant Killing tensors. We have

Theorem 5. Let K_i be a Killing tensor on (M_i, g_i, J_i) for $i = 1, \ldots, n$. Then the lift K^* of $K = K_1 + \ldots + K_n$ to P is a Killing tensor iff each K_i is J_i-invariant.
Proof. We need to check the cyclic sum condition (2) for different choices of vector fields. It is easy to see that if all three vector fields are vertical, then each component of the cyclic sum vanishes, since K^* is non-vanishing only on horizontal vector fields. If only two of the vector fields are vertical, then again all components vanish, since $\nabla_{\xi^i} \xi^j = 0$. For three horizontal vector fields we again see that the cyclic sum vanish, since the covariant derivative of K^* with respect to metric g on P is the same as that of K with respect to the product metric h on M. By Proposition 1, K is a Killing tensor for (M, h). The remaining case is when only one vector field is vertical. Let us put $Z = \xi^i$ and X, Y be basic horizontal vector fields. We compute

$$\nabla_{\xi^i} K^*(X, Y) = -K^*(\nabla_{\xi^i} X, Y) - K^*(X, \nabla_{\xi^i} Y)$$

$$= -K^*(A^i X, Y) - K^*(X, A^i Y)$$

$$= -K^*(\nabla_X \xi^i, Y) - K^*(X, \nabla_Y \xi^i),$$

where the next to last equality is due to the fact that X and Y are basic (see [8]) and the last one follows from the definition of the O'Neill tensor A.

Next we have

$$\nabla_X K^*(\xi^i, Y) = -K^*(\nabla_X \xi^i, Y).$$

Summing up, we have

$$C_{\xi^i, X, Y} \nabla_{\xi^i} K^*(X, Y) = -2 \left(K^*(\nabla_X \xi^i, Y) + K^*(X, \nabla_Y \xi^i) \right)$$

$$= -2 \left(K(\tilde{T}_i X, Y) + K(X, \tilde{T}_i Y) \right).$$

Now we use the formula (15) for the tensor \tilde{T}_i

$$C_{\xi^i, X, Y} \nabla_{\xi^i} K^*(X, Y) = -2\pi \sum_{j=1}^{r} \sum_{k=1}^{n} \sum_{c_k}^{a_{jk}} (K(J^i_k X, Y) + K(X, J^i_k Y)).$$

Since each J_i projects vector fields on TM_k, we see from the definition of K that

$$K(J^i_k X, Y) + K(X, J^i_k Y) = K^k(J_k X, Y) + K^k(X, J_k Y).$$

By J_k-invariance of K_k for $k = 1, \ldots, n$ we have completed the proof. \qed

Remark. It is worth noting, that we cannot lift in that way a conformal Killing tensor with non-vanishing P. In fact taking three vertical vector fields, we see that P vanishes on vertical distribution. On the other hand, for two vertical vector fields U, V and one horizontal vector field X the left-hand side of (2) vanishes and the right-hand side reads $P(X)g(U, V)$, hence P has to vanish also on the horizontal distribution.

Corollary 1. An r-torus bundle with metric defined by (5) cannot be an \mathcal{AC}^\perp-manifold. Especially there are no \mathcal{AC}^\perp structures on K-contact and Sasakian manifolds.
Next we show that the second component of the horizontal part of the Ricci tensor (13) is just a sum of lifts of metrics g_k, $k = 1, \ldots, n$.

$$
\sum_{s,t=1}^{r} b_{st} g(T_s X, T_t Y) = \pi^2 \sum_{s,t=1}^{r} h \left(\sum_{j=1}^{r} b_{sj} \sum_{k=1}^{n} \frac{a_{jk}}{c_k} J_k^* X, \sum_{i=1}^{r} b_{ti} \sum_{l=1}^{n} \frac{a_{il}}{c_l} J_l^* Y \right).
$$

Since J_k and J_l are orthogonal for different $k, l = 1, \ldots, n$, we obtain

$$
\sum_{s,t=1}^{r} b_{st} g(T_s X, T_t Y) = \pi^2 \sum_{s,t=1}^{r} h \left(\sum_{j=1}^{r} b_{sj} \frac{a_{jk}}{c_k} J_k^* X, \sum_{i=1}^{r} b_{ti} \frac{a_{il}}{c_l} J_l^* Y \right) = \pi^2 \sum_{j,l=1}^{r} b_{jl} \sum_{k=1}^{n} \frac{a_{jk} a_{lk}}{c_k^2} g_k(X, Y).
$$

From the above theorem we infer that, since a Riemannian metric is a Killing tensor and each g_k is J_k-invariant, the tensor field $K(X, Y) = \sum_{s,t=1}^{r} b_{st} g(T_s X, T_t Y)$ is a Killing tensor field.

Now we can prove the following theorem.

Theorem 6. Let P be a r-torus bundle over a Riemannian product (M, h) of almost Hodge A-manifolds (M_k, g_k, J_k), $k = 1, \ldots, n$ with metric g defined by (5). Then (P, g) is itself an A-manifold.

Proof. Since distributions \mathcal{H} and \mathcal{V} are orthogonal with respect to the Ricci tensor Ric of (P, g) by (17) we can write it as

$$
\text{Ric}(E, F) = \pi^2 \sum_{s,l=1}^{r} g(\xi^s, E) g(\xi^l, F) \sum_{i=1}^{m} \sum_{k=1}^{n} g_k \left(\frac{a_{sk}}{c_k} J_k E_i, \frac{a_{lk}}{c_l} J_k E_i \right)
$$

$$
+ \text{Ric}_M(E, F) - \frac{1}{2} \pi^2 \sum_{j,l=1}^{r} b_{jl} \sum_{k=1}^{n} \frac{a_{jk} a_{lk}}{c_k^2} g_k(E, F)
$$

using (18) and (16). The first component is a Killing tensor as a symmetrized product of Killing vector fields by Theorem 2. The second and third components are Killing tensors by Theorem 5. Since a sum of Killing tensors with constant coefficients is again a Killing tensor we have proved the theorem.

Remark. Observe that if at least one of the manifolds (M_k, g_k) has non-parallel Ricci tensor, then the Ricci tensor Ric of (P, g) is also non-parallel with respect to the metric g. Thus we have constructed a large number of strict A-manifolds.
References

Grzegorz Zborowski
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: zzzbogmail.com

Received August 21, 2014