On the size of the ideal boundary
of a finite Riemann surface

Abstract. The ideal boundary of a non-compact Riemann surface R_0 becomes visible if R_0 is embedded into some compact surface R which naturally should have the same genus g as R_0. All these compactifications of R_0 can be compared in a certain quotient space of \mathbb{C}^g. With respect to the canonical metric in this space the diameters of all models of the ideal boundary of R_0 are known to be bounded (cf. [4]) by a number depending only on R_0.

In this paper we prove that the diameter of each component has either a positive lower bound, depending only on R_0, or this component appears to be a single point in any compactification R.

Introduction. There are several definitions of the ideal boundary of Riemann surfaces (cf. [2]). In this article we consider a finitely connected, non-compact Riemann surface R_0 of finite genus g. If $\iota : R_0 \to R$ is a conformal embedding of R_0 into some compact surface R of genus g, then we call the boundary $\partial \iota(R_0) \subset R$ the ideal boundary of R_0 with respect to the compactification (R, ι) of R_0. We will ask for properties of this ideal boundary which are independent of (R, ι) and such characteristics of R_0. As in [4] we use a suitable Jacobian manifold, a quotient space of \mathbb{C}^g, in

1991 Mathematics Subject Classification. Primary 30F25, Secondary 30F20.

Key words and phrases. Ideal boundary, finite Riemann surface, Jacobian manifold.
which each embedding $\nu(R_0) \subset R$ can again be embedded. On the Jacobian manifold we have a natural metric, induced by the euclidean metric on \mathbb{C}^g. With respect to this metric we may compare the diameter of the ideal boundaries which we obtain for all the different embeddings in any surfaces R as described above. In [4] is proved that there is some uniform bound for all these diameters.

The ideal boundary, realized as a portion of a compact surface R, consists of components. Because R_0 is provided as a finitely connected surface we have only finitely many components of the ideal boundary. It is easy to verify that there is a one-to-one correspondence of these components if we consider two or more different embeddings $\nu_1 : R_0 \to R_1, \nu_2 : R_0 \to R_2$. In this sense we understand the components of the ideal boundary of R_0. The purpose of this article is to show that for each such component we have (besides the supremum obtained in [4]) also a non trivial infimum for the diameter of the corresponding subset of the Jacobian manifold, which is valid for all such compactifications R of R_0. If the infimum is 0, then the component in view is always (i.e. on each such R) a singleton.

1. Notations and Definitions. Let, as before, R_0 denote some finitely connected non-compact Riemann surface of finite genus $g > 0$. Then we can fix g pairs of piecewise smooth curves a_j^0, b_j^0 such $\chi_0 = \{a_j^0, b_j^0\}_{j=1}^g$ represents a canonical homology basis modulo dividing cycles on R_0 (cf. [1]). Now we consider some compact Riemann surface R of genus g together with some conformal embedding $\nu : R_0 \to R$ and define

$$\nu(a_j^0) = : a_j \quad \text{and} \quad \nu(b_j^0) = : b_j \quad (1 \leq j \leq g)$$

It can be easily seen that the g pairs of curves $\chi = \{a_j, b_j\}_{j=1}^g$ represent a canonical homology basis for R.

We say that the triple $\mathcal{R} = (R, \chi, \nu)$ gives a conformal compactification of the (marked) Riemann surface (R_0, χ_0).

Remark: For each $j, 1 \leq j \leq g$ there is one and only one closed holomorphic differential $\phi^{(j)}$ on R with

$$(1) \quad \int_{a_k} \phi^{(j)} = \delta_{jk}, \quad \int_{b_k} \phi^{(j)} = : \tau_{jk} \quad (j,k = 1,2,\ldots,g),$$

where δ_{jk} denotes the Kronecker symbol(cf. [3] III.2.8).

We write $\tau_k(R, \chi)$ resp. ϵ_k for the kth column of the matrix (τ_{jk}) resp. (δ_{jk}).

Let Π stand for the linear span with integer coefficients of the $2g$ vectors $\tau_1, \tau_2, \ldots, \tau_g, \epsilon_1, \epsilon_2, \ldots, \epsilon_g$
and we call
\[
\text{Jac } (R, \chi) := \mathbb{C}^g / \Pi
\]
the Jacobian manifold of the marked Riemann surface \((R, \chi)\). We have the canonical projection \(\pi : \mathbb{C}^g \to \text{Jac } (R, \chi)\).

Now we fix some point \(p^0\) on \(R\) and take for each \(p \in R\) a piecewise smooth curve \(\gamma_p \) on \(R\) with initial point \(p^0\) and endpoint \(p\). This defines a map \(\tilde{\Phi}_R : R \to \mathbb{C}^g\) via
\[
\tilde{\Phi}_R(p) = \left(\int_{\gamma_p} \phi^{(1)}, \int_{\gamma_p} \phi^{(2)}, \ldots, \int_{\gamma_p} \phi^{(g)} \right).
\]

Note that the image \(\tilde{\Phi}_R(p)\) depends on \(p\) and on the contour \(\gamma_p\). However, the composition map \(\Phi_R := \pi \circ \tilde{\Phi}_R : R \to \text{Jac } (R, \chi)\) turns out to be independent of the special choice of \(\gamma_p\).

Relating to the conformal compactification \(R = (R, \chi, \iota)\) of \((R_0, \chi_0)\) we define the ideal boundary of \(R_0\) as the topological boundary of the set \(\iota(R_0) \subset R\), i.e.
\[
\partial_R R_0 := \iota(R_0) \setminus \iota(R_0).
\]
The set \(R \setminus \iota(R_0)\) consists, by the assumption on \(R_0\) and the compactness of \(R\), of finitely many components \(B^1_R, \ldots, B^n_R\). Now we consider another conformal compactification \(S\) instead of \(R\), which gives the components \(B^1_S, \ldots, B^n_S\). Then, by means of pairwise disjoint, simple closed curves on \(R_0\) whose images under \(\iota_R\) resp. \(\iota_S\) separate the components \(B^j_R\) on \(R\) as well as \(B^j_S\) on \(S\), we get a one-to-one correspondence of the sets \(B^j_R\) and \(B^j_S\) for \(j = 1, \ldots, n\). In this sense we can speak of the \(n\) components \(B^1, \ldots, B^n\) (with respect to some fixed denumeration) of the ideal boundary \(\partial_R R_0\) independently of \(R\). Moreover, let
\[
\Delta_R R_0 := \Phi_R(\partial_R R_0) \text{ as well as } \Delta^j_R R_0 := \Phi_R(\partial B^j_R) \quad (j = 1, \ldots, n).
\]

We denote by \(d_R(M)\) the diameter of a subset \(M\) of \(\text{Jac}(R, \chi)\) with respect to the canonically induced metric of \(\mathbb{C}^g\).

2. Universal bounds.

Theorem 1. Let \((R_0, \chi_0)\) denote a non compact, finitely connected, marked Riemann surface of finite genus \(g > 0\) with the ideal boundary components \(B^1, \ldots, B^n\) (defined as above). Then there exist numbers \(c_j, C_j\) \((j = 1, \ldots, n)\) such that
\[
c_j \leq d_R(\Delta^j_R R_0) \leq C_j \quad (j = 1, \ldots, n)
\]
for all conformal compactifications \(R = (R, \chi, \iota)\) of \((R_0, \chi_0)\). Each lower bound \(c_j\) can be taken strictly positive except for the case where \(B^j_R \subset R\) is a singleton for some (and thus for all) conformal compactification of \((R_0, \chi_0)\).

In the proof we will need the following
Lemma. Let Ω denote a doubly connected domain in the complex plane, bounded by the piecewise smooth Jordan curves Γ_1, Γ_2. For each $m \in \mathbb{N}$ let some complex-valued function f_m, continuous on $\overline{\Omega}$ and holomorphic on Ω be given. We assume that the sequence f_m is uniformly bounded on Ω and tends to some constant c uniformly on Γ_2. Let f denote the limit function of some locally convergent subsequence of f_m on Ω. Then $f \equiv c$ on Ω or Γ_2 consists of a single point.

Proof. We assume that the cycle $\Gamma := \Gamma_1 - \Gamma_2$ represents a positively oriented parametrization of $\partial \Omega$, where the boundary of the unbounded component C_1 of $\mathbb{C} \setminus \Omega = C_1 \cup C_2$ is given by Γ_1. By Cauchy’s formula we have for $m \in \mathbb{N}$, $z \in \Omega$

$$f_m(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f_m(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f_m(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f_m(\zeta)}{\zeta - z} d\zeta =: g_1^m(z) - g_2^m(z).$$

Each function g_1^m admits an analytic continuation on $I(\Gamma_1) := \Omega \cup C_2$. Because Γ_1 has winding number 1 with respect to the points on Γ_2 and $f_m \to c$ uniformly on Γ_2 we have $g_1^m \to c$ as $m \to \infty$ on this contour.

The functions g_1^m are uniformly bounded on $I(\Gamma_1)$. By Montel’s theorem we may assume that the sequence g_1^m is locally uniformly convergent on $I(\Gamma_1)$. The limit function g is obviously an analytic continuation of $f = \lim f_m$ on $I(\Gamma_1)$. But we have just proved $g \equiv c$ on Γ_2. So, if Γ_2 is a continuum, we conclude $g \equiv c$ on $I(\Gamma_1)$, and thus $f \equiv c$ on Ω. □

Now we are ready to give the proof of Theorem 1. According to [4, Satz 2] there exists some C with $d_R(\Delta_R R_0) \leq C$ simultaneously for all conformal compactifications $\mathcal{R} = (R, \chi, \iota)$ of (R_0, χ_0). Since $\Delta_j R_0 \subset \Delta_R R_0 (j = 1, \ldots, n)$, we get the existence of the upper bounds \tilde{C}_j already by the mentioned result in [4].

Now we fix some $j \in \{1, \ldots, n\}$ and assume that there is no strictly positive lower bound c_j. This means, there exists some sequence of conformal compactifications $\mathcal{R}_m = (R_m, \chi_m, \iota_m)$ of (R_0, χ_0) in the described sense with the property

$$d_{\mathcal{R}_m}(\Delta^j_{\mathcal{R}_m} R_0)) \to 0 \text{ as } m \to \infty. \tag{2}$$

On the Riemann surface $R^j_m := R_m \setminus B^j_{R_m}$ we can find some domain Λ^0_m with the following properties:

(i) Λ^0_m has genus g,

(ii) $B^\mu_{R_m} \subset \Lambda^0_m$ for $\mu = 1, \ldots, j - 1, j + 1, \ldots, n$,

(iii) $\partial \Lambda^0_m$ can be parametrized as a Jordan curve ω^0_m on R^j_m.

In \(R^j \backslash \Lambda_0 \) we fix another Jordan curve \(\omega^1 \), homotopic to \(\omega^0 \) on \(R^j \). By \(A_m \) we denote the domain bounded by these curves and let \(\Lambda^1_m := \Lambda^0_m \cup A_m \).

As proved (with slight modifications) in [4], p.42, the following estimate is valid:

\[
(3) \quad d_{R_m}(\Phi_{R_m}(R_m \backslash \Lambda_m^1)) \leq B,
\]

where \(B \) depends only on \(A_m \) and the periods \(\tau_{\nu \nu} \). Note that we can give the conformal annulus \(A_m \) via \(\iota_m \) by the curves \(C^0 := \iota^{-1}(\omega^0_0) \) and \(C^1 := \iota^{-1}(\omega^1_0) \) on \(R_0 \) as well as on \(R_m \). Thus \(B \) is determined by considerations purely on the Riemann surface \(R_0 \) and we may assume that the boundary curves \(C^0, C^1 \) are the same for all \(m \in \mathbb{N} \).

Note that (3) can also be expressed as:

\[
(4) \quad \text{The variation of } \Phi_{R_m} \circ \iota_m \text{ on } M_m := R_m \backslash \Lambda_m^1 \text{ is uniformly bounded.}
\]

The set \(M_m \) is, for each \(m \in \mathbb{N} \), a simply connected domain. We may assume that for all \(m \) the starting point \(p_0^m \) of the contours in the definition of \(\Phi_{R_m} \) belongs to \(M_m \) and also that for each \(p \in M_m \) the contour \(\gamma_p \) is a curve in \(M_m \). Moreover, we take \(p_0^m = \iota_m(p_0) \) where \(p_0 \) is some fixed point on \(R_0 \). By the monodromy theorem the value \(\Phi_{R_m}(p) \) for \(p \in M_m \) comes out to be independent of the special choice of the contours \(\gamma_p \).

The set \(H := \iota_m^{-1}(M_m \cap \iota_m(R_0)) \) is a planar domain on \(R_0 \) and does not depend on \(m \).

Let \(G \subset \mathbb{C} \) be a domain bounded by Jordan curves which admits a conformal map \(\theta \) of \(G \) onto \(H \). It follows from our construction that the boundary of \(G \) consists of two components. One of them, which we denote by \(\Gamma_1 \), corresponds under \(\theta \) to the Jordan curve \(C_1 \) on \(R_0 \), the other one, \(\Gamma_2 \), to the ideal boundary component \(B^j \) of \(R_0 \).

The functions \(f_m := \Phi_{R_m} \circ \iota_m \circ \theta \) map \(G \) holomorphically in \(\mathbb{C}^g \) and have a continuous extension on \(\Gamma_1 \) and \(\Gamma_2 \). From (2) we know that the sequence \(f_m \) tends on \(\Gamma_2 \) uniformly to some constant. The functions \(f_m \) are uniformly bounded on \(G \), as follows from (4) and the normalization

\[
f_m(\theta^{-1}(p_0)) = \Phi_{R_m}(\iota_m(p_0)) = \tilde{\Phi}_{R_m}(p_0^m) = 0.
\]

We apply Montel’s theorem to the coordinate functions of \(f_m \) and may assume that the sequence \(f_m \) itself is locally convergent on \(G \). By our Lemma we see that the limit function \(f \) is constant, or \(\Gamma_2 \) consists of a single point.

But the first case cannot happen: the canonical lifting of the function \(f_m \) on \(H \subset R_0 \) is given by \(F_m := \tilde{\Phi}_{R_m} \circ \iota_m \) and has an unrestricted analytic
continuation on \(R \) along every curve on \(R \) starting in \(H \). This defines an analytic element \(F_m \) on \(R \). On the universal covering surface \(\Sigma_0 \) of \(R \) this element \(\tilde{F}_m \) appears as a holomorphic function \(F_m^* : \Sigma_0 \to \mathbb{C} \). Let this be done for all \(m \in \mathbb{N} \). By (4) and the definition of the functions \(\tilde{\Phi}_{R,m} \) we see that the functions \(F_m^* \) are uniformly bounded on every compact subset of \(\Sigma_0 \). This shows that the sequence \(F_m^* \) tends, locally uniformly on \(\Sigma_0 \), to a constant as \(m \to \infty \) if the sequence \(f_m \) does the same on \(G \). But this contradicts (cf.(1))

\[
\int_{a_k} \phi^{(k)} = 1 \quad (k = 1, \ldots, g).
\]

Thus \(\Gamma_2 \) is a constant curve. By elementary considerations we see that in this case \(B_{R} \subset R \) must be a singleton for all conformal compactifications of \(R_0 \) in the described sense. \(\square \)

References

