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A novel approach to the work function in surface and cluster science
Nowe ugcie pracy wyjcia w fizyce powierzchni i nauce o klasterach

ABSTRACT

In this paper we describe the entirely differeninpof view on the work function of
curved metallic surfaces. We pointed out that & filtrmulae based on the classical electro-

dynamics which exploits the idea of the image paéra characteristic small distance

= %582/4“50% , Wheree is elementary chargg is vacuum permeability angl. is work

function of an infinite flat surface, should be satered. In the framework of this approach
we obtained excellent agreement with the experiatefgta in estimation of work function
dependence on: (1) the size of monoatomic stepsu¢face coverage atclose to zero, (3)
size of small metallic droplets.

1. INTRODUCTION

Wood [1] has pointed out that the work function (VM )an isolatedne-
tallic sphere of radiuR is higher by§e2/4ﬂsoR than that of a planar sur-

face, ¢... His erroneous formula was discussed in numerous pagret
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monographs devoted to cluster science, see [2, 3,fdr Bxample. Correct
- 1. 3

formula, however, has a coefficient gf instead ofg because the electro-

static energy of a charged sphere of radtusnd chargee is %e2/4nsoR

[4]. The coefficient% was further confirmed by Seidl and Perdew [5]ha t
framework of the jellium model. Therefore, from batlassical and quan-
tum-mechanical approaches, the correct asymptotioiula for the ioniza-
tion potential | P, of a metallic ball is:

e2

ATEGR

IP:¢O°+% (1)

It is the purpose of this paper to point out the asymptotic formula
can be used in a rather limited range due to amgsson which has been
made at its derivation. The assumption was tha&lectron is extracted from
a small distanced(— 0) from the surface. The consequence of this agsum
tion is that the radiuR has to be large enough in comparison to the atomic
radii. The same objection refers to spherical gdeahsurfaces from which
we will start our considerations.

In order to extend the application of the classilaltrostatic formulae
down to the atomic radii we will consider a findiearacteristic distanakfrom
which integration of the image force exactly yiell§ value. The WF of planar
and spherical grounded surfacés and 9, respectively) is calculated as the
work done against the image force in a usual way:

2 (o]
e 3595eVIA

- = | 2

oo

_ €1 d
*R = Tomed 1, d _¢m/(1+2Rj' ©

Two proposals of the estimation dfvalue are given in refs. [6, 7], but
here we do not need to use those estimations. imhe Yalue ofd can be
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calculated simply from equation (2) and substitutedequation (3). This
yields the following formula fo#-:

(o]
, 3595eVIA 1
. 2R| (4)

The first order approximation of this formula,

q)R:q)oc 1

o 1
=, —3595eVIA —,
dr = ¢ R (5)
may be valid forR>> 1A. It can be rewritten in a well-known form on
asymptotic equation (see e.g. [3]):

1 e
8 4TEgR

PR = Po - (6)

2. WORK FUNCTION AT MONOATOMIC STEPS

By means of the accurate formula (4) we can singgiylain, quantita-
tively or at least semiquantitatively, the variatiof the local WF due to the
presence of monoatomic steps and due to the presdéradsorbed atoms at
coverages below one monolayer.

The local WF changes at steps of Cu(111) and Ay($Lfifaces have
been studied recently with scanning tunelling nscapy (STM) by Jia
et al. [8, 9]. These authors have found the 1.43+d)/ reduction of local
WF at Cu-Cu monoatomic step, and 0.9 £0.3 eV reolucat Au-Au
monoatomic step. The depth of the local WF profdesnonoatomic steps
(i.e. 9 — 0g) can be evaluated by formula (4). The resultsabfidation are
shown in Table 1.

It should be noted that random tracing of local WFSTM method
shows large variation in their depths (+ 0.3 eW)olr opinion this may be
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due to tracing over various localities with resptrtthe top of the atom
where the radius of curvature equals the atomiwisad

Table 1. The lowering of WF at monoatomic steps
Spadek wart&i pracy wygcia na jednoatomowym wigiu

b —0
Metal ¢o[eV]* | 2R [A]* ox[eV] :
[eV]
Cu(111) 4.98 2.551 3.88 1.10
Au(111) 5.31 2.878 4.30 1.02

*data from ref. [7]

3. WORK FUNCTION DEPENDENCE ON THE SURFACE COVERAGE

By means of the formula (4) we can also attackaideproblem of the
charge of WF of a metal surface due to adsorpticat@ms with different
WEF. A classical example discovered by Langmuir [I)Cs on W sur-
face and studied in detail by Taylor and Langmdait][ If the coverage,
0, of Cs atoms rises from O to 1 monolayer, then d/fEhe whole sur-
face drops from 4.54 eV (pure W) to a value belad42eV (pure Cs).
The minimum value is comparable to the local WKCsfatom calculated
by formula (4):

214eV
oRr = —+ 3505 - 163eV.
2.1415.4C

The experimentally observed minimum value is vehyse to this
value (Fig. 1). The minimum is expected when therage spacing be-
tween Cs nuclei is of about 4R, which correspordthe coverag® to
be equal ca. 0.5. At this value tungsten surfaceotally screened by
large Cs atoms while the contribution of the nemgining Cs atoms to
WEF is meaningless. The experimental valu®is 0.67, the minimum is
very broad, extending from aboat= 0.5 to® = 0.8, see Figure 1.
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4\ ~— p=454V-771e7-0

Work function [eV]
»
o
J

Fig. 1. A comparison of the predicted plotygf) at© close
to zero with experimental data from [11]
Poréwnanie przewidywanego przebiegu funkg¢®) przy © bliskim 0
z danymi eksperymentalnymi, zawartymi w [11]

Finally we can estimate the initial slomgg at ©=0) of the¢(®)

plot. Consider the weighted average value

2 2
¢=¢RT‘%")+¢W{1-M} )

a

whereR radius of Cs atoma? = nR2/® and ¢y, is WF of tungsten. The
above equation can be rewritten as follows:

2
¢ = dw — (bw —¢R>(1+%j o, (8)

the slope is just the coefficient@t which is
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WO - (454- 163 eV 6P = -771eV.
dOle=o

The straight line with this slope fits well the exjmental points (Fig. 1).

4. DERIVATION OF NONASYMPTOTIC (EXACT) FORMULAE

We will follow the classical electrodynamics forraubr the force acting
between isolated conducting ball of radiRisharged withQ and a chargg
located at distancefrom the ball center [12]:

R
Q+a~ O°Rr
4TEgF = L - (9)

e

From this formula one obtains by integration théofeing expression for
the work W of removal of the chargdrom distancel to infinity:

2
q Q 1 R R
W=_—"—|-2% - + _

8“50( qR+d (R+d) (R+d)2—R2J (10)

This formula converges to the asymptotic equatibnfgr Q=€, q=-¢€
and R>>d = e2/(16n£0¢°o). For practical calculations formula (10) may
be rewritten in the following form:

B x\ 1+ 2x
W —¢m[(1+§] +2X—(1+x) ] (11)

wherex = d/R.
In the case of grounded conducting sphere the t¢biaige of the sphere

R .
Q+qg— is zero, hence the formula f@f has one term only:
]
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2
w=9 p R (12)
8mey (R +d)* - R?

Equation (12) may be identified with exact equati@hfor ¢,if q= e,
which has the asymptotic form given by equation (6)

5. IONIZATION POTENTIAL OF SMALL METALLIC CLUSTERS

As an illustrative example of application of theaexformula (10) let us
calculate the ionization potential (IP) of tantalgtusters for which experi-
mental data are available in ref. [13]. The experital points are plotted in
Figure 2 along with theoretical curves. The Mie was calculated according
to the exact equation (10), whilst the, ihe according to the asymptotic
formula (1) and Wline according to an interpolation formula given[i4].

We assumed for lines \and W the same relationship between the number
of atomsn, and the ball radius:

7.5

E Ta

lonization potential [eV]
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Fig. 2. IP of Ta clusters as a function of numbestoms. The experimental
data were taken from ref. [13]. See text for dgdimn of curves
Potencjat jonizaciji klasterow Ta jako funkcja ligztomow. Dane daviadczalne
pochodz z publikacji [13]. Patrz opis krzywych w t&die
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R=181rn%'3, (13)

wherer is the metallic radius and the numerical fact®&al1lis derived from
the assumption of maximum packing density of atomsthe ball,

/3
(:nﬁ)l =1.8094... It is seen in Figure 2 much better fit of calteth

line according to eqn. (10) for any number of atamshe cluster. Depar-
tures from this line may be explained by: (1) isofieemation and (2) quan-
tum effects.

In the case of alkali metal clusters we obtainedideal agreement of the
exact curve with the experimental data when thadta (13) was replaced by :

R=rgn™"". (14)

wherer is the Wigner-Seitz radius (see Fig. 3). This lesunply means
that there is no contraction of atoms in thesetehssin comparison to
bulk metal, unlike as in the case of transition algethe clusters of which
are strongly contracted by the surface tensionef@rc

45

lonization potential [eV]
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Fig. 3. IP of K clusters as a function of numbeatifms. The experimental
data were taken from ref. [15]. See text for dexdiznn of curves
Potencjat jonizacji klasterow K jako funkcja liczeyomoéw. Dane eksperymentalne
zaczerpnito z publikacji [13]. Patrz opis krzywych w tale
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STRESZCZENIE

W niniejszym artykule przedstawiono catkowicie nopynkt widzenia na pracwyj-

$cia z zakrzywionej powierzchni metalicznej. Rragyjscia obliczamy jako catksit obra-
zowych, korzystajc ze wzoréw elektrodynamiki klasycznej, przy czyatkowanie odbywa

2

sie w granicach od wartgi d = 1—16e /41'[80q)Do (gdziee — tadunek elementarny; — prze-

nikalncs¢ elektryczna préni; ¢.. — praca wyjcia z powierzchni ptaskiej) do nieski@zono-
$ci. Taki sposéb obliczedat wartdci zgodne z eksperymentem w rgstiacych sytuacjach:
1. zmiany pracy wyfia na jednoatomowych schodkach; 2. w zadéci od stopnia pokry-
cia powierzchni w przypadkach matych pokrg. matych rozmiaréw kropli metalicznej.
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