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Abstract. In this note we discuss the valency of a function f which is the

product of an analytic polynomial and the conjugate of another analytic

polynomial.

1. Introduction. At the second international workshop on planar har-
monic mappings at the Technion , Haifa, January 7-13, 2000, the following
question was posed. Let f be the product of an analytic polynomial pn of
order n and the conjugate of an analytic polynomial qm of order m. Deter-
mine the maximal valency of f . Such a function is termed a logharmonic
polynomial. Under the mild assumption that pn = const qm, the cardinal-
ity of the zeros of f − w is finite for all w ∈ C [1]. Observe that harmonic
polynomials do not inherit this property as the following example shows.

1991 Mathematics Subject Classification. Primary 30C55, Secondary 31A05, 30C62,
49Q05.

Key words and phrases. logharmonic polynomials, zero set.
Supported by E. Shaver Research Fund, Technion, The Wenger Grant, Technion Cana-

dian Society, the NSERC of Canada and the FCAR of Quebec.



22 D. Bshouty and W. Hengartner

The quadratic harmonic polynomial f(z) = z + z + z2 − z2 maps the whole
imaginary axis to the origin.

A function f that is the product of an entire analytic function and the
conjugate of another entire analytic function is called a logharmonic map-
ping and it shall be denoted by f ∈ HH. A function f ∈ HH that vanishes
at a point z0 is of the form

(1) f(z) = (z − z0)n(z − z0)mh(z)g(z)

where h and g are entire analytic functions non-vanishing in a neighbour-
hood of z0.We shall then say that f has a zero of order (nk,mk) at z0. The
valency of f at z0 is defined by V Z(f, z0) = |n−m| provided that n 6= m.
It is obvious that this definition becomes senseless if n = m > 0. If f does
not vanish at z0 then f is said to have a zero of order (0,0). Before we can
define the valency of f at an arbitrary point of C, some further investigation
on the behaviour of f − w is necessary.

2. The valency of a polynomial in HH. Let f = pnqm be a loghar-
monic polynomial in HH. Then f is a solution of the non-linear system of
elliptic partial differential equations

(2) fz = a
f

f
fz

where a(z) = q′n(z)pn(z)
qn(z)p′n(z) is either a rational function or a ≡ ∞. In the latter

case, pn is a constant. Let D be a subdomain of C. We define

SL(D) = {z : |a(z)| < 1}
SE(D) = {z : |a(z)| = 1}
SG(D) = {z : |a(z)| > 1}.

If f is not a constant then f is an open mapping on C \ SE(D).Hence, the
similarity principle holds on SL(D) (respectively on SG(D)). This is to say
that on B, a subdomain of SL(D) (respectively of SG(D)), the function
f can be represented as

(3) f(z) = A(χ(z))

where χ is a homeomorphism defined on G and A is an analytic function
defined on χ(G). Thus, f behaves like an analytic function on S(D) =
SL(D) ∪ SG(D). In particular, the zeros of f − w form an isolated set in
S(D), and can be counted by the argument principle.This will be explored
in the next section.



On the valency of a polynomial in HH 23

Definition 1. Let f = pnqm ∈ HH and let D be a subdomain of SL(C)
(respectively of SG(C)). For z0 ∈ S(D) = SL(C) ∪ SG(C) we define:

(1) NZ(f − w,D) is the cardinality of the zeros of f − w in D;
(2) V Z(f−w, z) = V Z(A−w,χ(z)) is the valency of f−w at z if f−w

vanishes at z. In other words, this valency is the order of the zero
of A− w at χ(z);

(3) V Z(f − w,D) =
∑

z∈D V Z(f − w, z) is the number of zeros of f
multiplicity counted;

(4) V (f, z0) = V Z(f−f(z0), z0) is the valency of f at an arbitrary point
of SL(C) ∪ SG(C);

(5) V (f,D) = maxw∈C V Z(f − w,D) = maxw∈C NZ(f − w,D);
(6) V (f, C) = maxw∈C NZ(f − w, C).

Remarks.
1. Item 3 of the above definition is compatible with the earlier definition

of V Z(f, z0) = |n0 −m0| by using the representation (1).
2. If V Z(f − w0, z0) = k, then there is a δ− neighborhood of z0 and

an ε -neighbourhood of w0 such that NZ(f − w, |z − z0| < δ) = k for all
0 < |w − w0| < ε.

The following argument principle for polynomials in HH is shown in [1]

Theorem A. Let f = pnqm be a polynomial in HH and w ∈ C be fixed.
Assume that f − w does not vanish on the set SE(C). For n > m, we have

(4) V Z(f − w,SL(C))− V Z(f − w,SG(C)) = n−m.

As we have mentioned in the introduction, the cardinality of the zeros of
f − w in C is finite for all w ∈ C, unless pn = const.qn. Applying Bezout’s
Theorem on the common zeros of two real-valued polynomials of two real
variables, we conclude that (n + m)2 is an upper bound for the valency
V (f, C). We think that this upper bound is too large. Indeed, the maximal
valency of A(z − c)(z − d), c 6= d, is 2 (see the next section). The examples
in section 3 give the impression that the best upper bound for V Z(f, C) is
(n + m). However, we show in section 4 that this value has to be much
larger.

3. The cases of small and large values of w. We first start with
polynomials that vanish at a single point. In this case

f(z) = const.t(z − p)n(z − p)m.

If n 6= m, then we have V Z(f − w, C) = |n − m| for all w ∈ C. Hence
V (f, C) = |n−m| ≤ n + m.
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Consider now the case n = 1,m = 1 and p1 6= const.q1. Then, without
loss of generality, we may assume that f(z) = z(z − b), b > 0. The equation
x2 + y2 − bx + iby = u + iv implies y = v/b and the equation x2 + bx =
u − (v/b)2 has at most two solutions for x if u and v are given . Hence,
V (f, C) ≤ 2 = n + m.

Next, we consider the case of small values of w. Suppose that f vanishes
at the points zk, 1 ≤ k ≤ N , with order (nk,mk), nk 6= mk. Then nk > mk

implies that a(zk) = 0 and nk < mk implies that a(zk) = ∞. Consider
the disks ∆k = {z : |z − zk| ≤ δ}, such that ∆k ∩ ∆j = φ if k 6= j
and ∆k ∩ SE(C) = φ for all k, 1 ≤ k ≤ N. Furthermore, choose δ so
small such that |fz| + |fz| does not vanish on ∆k \ {zk}. It then follows
that f is locally univalent and |nk − mk|−valent on ∆k \ {zk}. Define
M = inf{t = |f(z)| : z ∈ C \ ∪N

k=1∆k}. Then M > 0 and we conclude that
V Z(f − w, C) =

∑N
k=1 |nk −mk| ≤ n + m for all w, |w| < M.

Now, we consider the case of large values of w. Let f = pnqm be a
polynomial in HH and assume that n 6= m. With no loss of generality,
we may assume that n > m. Then we have a(∞) = m/n < 1 and there
is an R > 0 such that ∆R = {z : |z| ≥ R} is contained in SL(C). Define
M = sup{t = |f(z)| : z ∈ C \ ∆R}. Fix w with |w| > M. Next, choose
R1 > R such that M1 = inf{t = |f(z)| : |z| = R1} > |w|. We now apply the
classical argument principle and get

NZ(f − w,C) = NZ(f − w,R < |z| < R1) ≤ V Z(f − w,R < |z| < R1)

=
1
2π

∫ 2π

0

d arg[f(R1e
it)− w]− 1

2π

∫ 2π

0

d arg[f(Reit)− w]

=
1
2π

∫ 2π

0

d arg[f(R1e
it)− w] = n−m ≤ n + m.

4. The case m = 1. We first start with the example f(z) = z(z−2)(z−4).
Then a(z) = (z−2)(z−4)

z(2z−6) and a′(z) = (z2+8)(6)−32z
z2(2z−6)2 which is positive on the

negative real axes. We have f(3) = −3, a(3) = ∞, f(−1) = −15 and
a(−1) = 15

8 . Hence, there is a z1 on the interval (−1, 0) such that f(z1) = −3
and a(z1) > 1 . In other words, we have V Z(f + 3, SG(|z| ≤ 10)) ≥ 2. We
now apply the generalized argument principle stated in Theorem A and we
get for sufficiently large R

V Z(f + 3, SL(|z| ≤ R))− V Z(f + 3, SG(|z| ≤ R)) = n−m = 1

which implies V Z(f + 3, SL(|z| ≤ R)) ≥ 3 and hence,

V (f, C) ≥ V Z(f + 3, SL(|z| ≤ R)) + V Z(f + 3, SG(|z| ≤ R)) = 5.
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This eliminates the conjecture that the maximum valency is at most
n + m = 3.

We conjecture that in the case of m = 1 the maximal valency is 3n− 1.
In the following example we show that it is at least 3n − 3. Consider the
polynomial f(z) = |z|2( zn−1

n −1) = zpn(z). Then we have p′n(z) = zn−1−1
and a(z) = pn(z)

zp′n(z) . At the points zk = e2πik/(n−1), 1 ≤ k ≤ n − 1, we have
a(zk) = ∞ and f(zk) = −n−1

n . Hence V Z(f + n−1
n , SG(|z| < 2)) ≥ n − 1.

We now apply the generalized argument principle and get for sufficiently
large R

V Z(f +
n− 1

n
, SL(|z| ≤ R))− V Z(f +

n− 1
n

, SG(|z| ≤ R)) = n− 1.

This implies V Z(f + n−1
n , SL(|z| ≤ R)) ≥ 2n− 2 and hence,

V (f, C) ≥ V Z(f +
n− 1

n
, SL(|z| ≤ R)) + V Z(f +

n− 1
n

, SG(|z| ≤ R))

≥ 3n− 3.
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