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Abstract. The authors give a theorem concerning results which state that

the mapping having the highest rate of growth of the Jacobian, in a linearly
invariant family of locally biholomorphic mappings, have this growth regu-

lar.

1. Introduction. Regularity theorems are well known in different families
of holomorphic functions of one variable; see e.g. [BIE], [BAZ], [CAM],
[HAY], [KRZ], [LEB], [MIL], [ST1], [ST2]. For example, in the class S of
normalized univalent functions in the open unit disc ∆ a regularity theorem
is as follows:

Theorem 1 ([HAY], [KRZ]). For every continuous function g : ∆ −→ C
and r ∈ [0, 1), put M(r, g) = max|ζ|=r |g(ζ)| . If f ∈ S, then there exist the
limits

lim
r→1−

(1− r)2

r
M(r, f), lim

r→1−

(1− r)3

1 + r
M(r, f ′);
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they both equal the same number δf = δ ∈ [0, 1] and δ = 1 only for the
Koebe function Kη(ζ) = ζ(1− ζe−iη)−2. Moreover, if f ∈ S and δ 6= 1, then
functions (1−r)2

r M(r, f), (1−r)3
1+r M(r, f ′) decrease on the interval [0, 1), but

if f ∈ S and δ 6= 0, then for every θ ∈ [0, 2π) functions (1−r)2
r

∣∣f(reiθ)
∣∣ ,

(1−r)3
1+r

∣∣f ′(reiθ)∣∣ do not increase and there exists a unique number θf ∈
[0, 2π) such that

lim
r→1−

(1− r)2

r

∣∣f(reiθ)
∣∣ = lim

r→1−

(1− r)3

1 + r

∣∣f ′(reiθ)∣∣ =
{
δ for θ = θf

0 for θ 6= θf
.

Similar regularity theorems for any linearly invariant families of finite
order (of locally univalent functions in the unit disc ∆) have been given in
papers [CAM] and [ST1], [ST2].

In this paper we will consider the case of holomorphic mappings in Cn.

2. Preliminaries. Let us denote by Bn the unit ball {z = (z1, ..., zn) ∈
Cn : 〈z, z〉

1
2 < 1}, where 〈·, ·〉 is the euclidean inner product; for r > 0 let

Bnr := rBn. Let A be the set of all biholomorphic automorphisms of the ball
Bn. If Dkf(z) is the k-th Fréchet differential of the mapping f at the point
z, then Jf (z) := detDf(z), but D2f(z)(w, ·) is a linear bounded operator
from Cn into itself, which is obtained by the restriction of the symmetrical
bilinear operator D2f(z) to w × Cn. Let LSn stand for the family of all
holomorphic mappings f : Bn −→ Cn normalized by the conditions

Jf (z) 6= 0, Df(0) = I, f(0) = 0.

For every ϕ ∈ A we will consider an operator Λϕ defined on the set LSn
as follows:

Λϕ(f)(z) = (Dϕ(0))−1(Df(ϕ(0)))−1(f(ϕ(z))− f(ϕ(0))), z ∈ Bn.

A family M ⊂LSn is called linearly invariant family if for every f ∈ M and
every ϕ ∈ A the mapping Λϕ(f) also belongs to M; (usually, we will write
M ∈LIF). The quantity

ord M =
1
2

sup
f∈M

max
‖w‖=1

∣∣tr D2f(0)(w, ·)
∣∣

is called the order of a family M ∈LIF . This definition of the order of a
family M ∈LIF comes from J.A. Pfaltzgraff (see [PFA]), but a similar idea
has been presented in [BFG] by R.W. Barnard, C.H. FitzGerald and S.
Gong.
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In this paper we will only consider the case when ord M <∞.
In [PFA] it is shown that if ord M = α for a family M ∈LIF , then

α ≥ n+1
2 and the following inequality holds for f ∈ M

(2.1)
(1− ‖z‖)α−n+1

2

(1 + ‖z‖)α+ n+1
2

≤ |Jf (z)| ≤ (1 + ‖z‖)α−n+1
2

(1− ‖z‖)α+ n+1
2

, z ∈ Bn.

A complete proof of the sharpness of estimates (2.1) is given in our paper
[LST].

For n = 2 the above result was obtained by R.W. Barnard, C.H. FitzGer-
ald and S. Gong in [BFG], but under the additional assumption that all
mappings f ∈ M are biholomorphic.

Let f ∈ LSn; the order of the family Mf := {Λϕ(f) : ϕ ∈ A} belonging
to LIF will be called the order of the mapping f. In [GLS] it was shown
that the number ord f determines the rate of growth of

∣∣JΛϕ(f)(z)
∣∣ . To be

more precise, ord f is the infimum of all numbers α such that for every
ϕ ∈ A and z ∈ Bn holds the following estimate

(2.2)
∣∣JΛϕ(f)(z)

∣∣ ≤ (1 + ‖z‖)α−n+1
2

(1− ‖z‖)α+ n+1
2

.

We will use the following universal linearly invariant family

Uα :=
⋃
{M ∈LIF : ord M ≤ α} .

3. Regularity theorem. For every continuous function g : Bn −→ C
and r ∈ [0, 1) put, similarly as above,

M(r, g) = max
‖z‖=r

|g(z)| .

Theorem 2. If f ∈ Uα, then:

(i) M(r, Jf ) (1−r)α+ n+1
2

(1+r)α−n+1
2

is a non-increasing function on the interval [0, 1)

and for every v ∈ ∂Bn
∣∣∣∣Jf (rv) (1−r)α+ n+1

2

(1+r)α−n+1
2

∣∣∣∣ is also non-increasing on [0, 1).

(ii) There exists a vector v0 = v0(f) ∈ ∂Bn and a number δ0 = δ0(f) ∈
[0, 1] such that

(3.1) lim
r→1−

M(r, Jf )
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

= δ0 = lim
r→1−

|Jf (rv0)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

,
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(3.2)

lim
r→1−

M(r,
d

dr
Jf (rv))

(1− r)α+ n+3
2

((n+ 1)r + 2α)(1 + r)α−
n+3

2

= δ0

lim sup
r→1−

∣∣∣∣ ddrJf (rv0)
∣∣∣∣ (1− r)α+ n+3

2

((n+ 1)r + 2α)(1 + r)α−
n+3

2

= δ0

,

(3.3)

lim
r→1−

∫ r

0

M(ρ,
d

dρ
Jf (ρv))dρ

(1− r)α+ n+1
2

(1 + r)α−
n+1

2

= δ0

lim
r→1−

∫ r

0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ (1− r)α+ n+1

2

(1 + r)α−
n+1

2

= δ0

.

The vector v0 = v0(f) ∈ ∂Bn will be called the direction of the maximal
growth of the mapping f ∈ Uα.

(iii) If in part (ii) v0 = (1, 0, ..., 0), then δ0 = δ0(f) = 1 if and only if

(3.4) Jf (z1v0) =
(1 + z1)α−

n+1
2

(1− z1)α+ n+1
2

:= F (z1), z1 ∈ ∆.

However, if n > 1, then there exist infinitely many mappings f ∈ Uα, for
which relation (3.4) is fulfilled.

Proof. For an arbitrarily fixed point a ∈ Bn, let s =
√

1− ‖a‖2 and for
z ∈ Bn

Pa(z) =

{
a 〈z,a〉‖a‖2 for a 6= 0

0 for a = 0
, ϕa(z) =

a− sz + (s− 1)Pa(z)
1− 〈z, a〉

.

Then, (see [RUD]):

ϕa ∈ A, ϕa(0) = 0, Dϕa(0) = −s(I + (s− 1)Pa), Dϕa(0)(a) = −s2a,

|Jϕa
(z)| =

(
s2

|1− 〈z, a〉|2

)n+1
2

, |Jϕa
(0)| = sn+1, |Jϕa

(a)| = s−(n+1).

Let us fix f ∈ Uα and v ∈ ∂Bn. Then, using the above properties of the
mappings ϕa, for every t ∈ [0, 2π) and every a ∈ Bn − {0} such that
a
‖a‖ = v, we obtain the following relations

d

dρ
Jf (ϕa(ρeitv))|ρ=0 =

DJf (a)Dϕa(0)(eitv) = DJf (a)Dϕa(0)(a)(
eit

‖a‖
) = DJf (a)(a)(−s2 e

it

‖a‖
).
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Thus,

(3.5)
d

dρ
Jf (ϕa(ρeitv))|ρ=0 = −s2eitDJf (a)(v).

On the other hand, ord Uα = α and for ϕ ∈ A

JΛϕ(f)(z) =
Jf (ϕ(z))Jϕ(z)
Jf (ϕ(0))Jϕ(0)

,

so putting in (2.2) z = ρeitv = ρeit a
‖a‖ and ϕ = ϕa we have

log
∣∣∣∣Jf (ϕa(ρeitv))Jϕa

(ρeitv)
Jf (a)Jϕa

(0)

∣∣∣∣ ≤ log
(1 + ρ)α−

n+1
2

(1− ρ)α+ n+1
2

.

This inequality remains true also after differentiation with respect to ρ at
the point ρ = 0. Therefore, using elementary calculations and the properties
of the mapping ϕa, we obtain for every t ∈ [0, 2π)

(3.6) <
[
eit
(
−s2DJf (a)(v)

Jf (a)
+ ‖a‖ (n+ 1)

)]
≤ 2α.

We will prove now the claim (i) of our theorem.
Let t = π and let r := ‖a‖ vary in the interval [0, 1). Then the above

inequality can be rewritten in the following equivalent form

<
d
drJf (rv)
Jf (rv)

− (n+ 1)r + 2α
1− r2

≤ 0.

Since the left side of this inequality is the derivative of the function

log |Jf (rv)| −
∫ r

0

(n+ 1)ρ+ 2α
1− ρ2

dρ = log

(
|Jf (rv)| (1− r)α+ n+1

2

(1 + r)α−
n+1

2

)
,

with respect to r, log
(
|Jf (rv)| (1−r)α+ n+1

2

(1+r)α−n+1
2

)
is a non-increasing function of

the variable r ∈ [0, 1). This gives the second part of claim (i).
Now let r1, r2 ∈ [0, 1) be fixed but arbitrary numbers such that r1 < r2.

Since ∂(r2Bn) is a compact set, there exists a point v2 ∈ ∂Bn such that
M(r2, Jf ) = |Jf (r2v2)| . Using the second part of (i) (proved above), we
have

M(r1, Jf )
(1− r1)α+ n+1

2

(1 + r1)α−
n+1

2

≥ |Jf (r1v2)| (1− r1)α+ n+1
2

(1 + r1)α−
n+1

2

≥ |Jf (r2v2)| (1− r2)α+ n+1
2

(1 + r2)α−
n+1

2

= M(r2, Jf )
(1− r2)α+ n+1

2

(1 + r2)α−
n+1

2

.
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Hence

M(r1, Jf )
(1− r1)α+ n+1

2

(1 + r1)α−
n+1

2

≥M(r2, Jf )
(1− r2)α+ n+1

2

(1 + r2)α−
n+1

2

.

This proves the first part of claim (i).

Now we will prove claim (ii) of our theorem.
We start with the proof of equality (3.1).
Part (i), (proved above), implies that there exist both limits in (3.1). If

we denote the first limit by δ0 and the second limit by δ1, then δ0, δ1 ∈ [0, 1],
because M(0, Jf ) = |Jf (0)| = 1. It is sufficient to prove that δ0 = δ1 for
some v0 ∈ ∂Bn. For every r ∈ [0, 1) the function |Jf (z)| is continuous on
the compact set ∂(rBn), so there exists a point v(r) ∈ ∂(Bn) such that
M(r, Jf ) = |Jf (rv(r))| . Let (rν) be an increasing sequence of numbers
rν ∈ [0, 1), convergent to 1 and such that the corresponding sequence (vν)
of points v(rν) ∈ ∂(Bn) tends to a point v0 ∈ ∂Bn if ν tends to infinity.
Let r ∈ [0, 1) be fixed but arbitrary. Then r ∈ [0, rν) for sufficiently large
ν, so by the definition of v(r) and by part (i)

M(r, Jf )
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

≥ |Jf (rvν)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

≥ |Jf (rνvν)| (1− rν)α+ n+1
2

(1 + rν)α−
n+1

2

= M(rν , Jf )
(1− rν)α+ n+1

2

(1 + rν)α−
n+1

2

.

If ν →∞, then from the above, in view of continuity of |Jf | and in view of
the definition of δ0, we have

M(r, Jf )
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

≥ |Jf (rv0)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

≥ δ0.

If r → 1−, then using the definition of numbers δ0, δ1, we obtain δ0 ≥ δ1 ≥
δ0. This proves the announced equality δ0 = δ1.

Now we will prove equalities (3.2).
Since t is arbitrary, (3.6) implies

s2
∣∣∣∣DJf (a)(v)

Jf (a)

∣∣∣∣− ‖a‖ (n+ 1) ≤ 2α.

Thus, after introducing the variable r := ‖a‖ , ranging over the interval
[0, 1), we have ∣∣∣∣∣ ddrJf (rv)

Jf (rv)

∣∣∣∣∣ ≤ (n+ 1)r + 2α
1− r2

.
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Therefore, by (2.1) we obtain

(3.7)

∣∣∣∣ ddrJf (rv)
∣∣∣∣ ≤ ((n+ 1)r + 2α)(1− r2) |Jf (rv)|

≤ ((n+ 1)r + 2α)
(1 + r)α−

n+3
2

(1− r)α+ n+3
2

.

This implies the existence of a finite upper limit in (3.2) which is denoted
by δ2. We will show that δ2 = δ0. From the definition of the number δ2 it
follows that for every ε > 0 there exists a number r0 ∈ [0, 1) such that∣∣∣∣ ddrJf (rv0)

∣∣∣∣ ≤ (δ2 + ε)((n+ 1)r + 2α)(1− r2)
(1 + r)α−

n+3
2

(1− r)α+ n+3
2

for every r ∈ [r0, 1) and v0 ∈ ∂Bn. From this we obtain

|Jf (rv0)| − |Jf (r0v0)| = [exp(< log Jf (ρv0))]ρ=rρ=r0

=
∫ r

r0

|Jf (ρv0)| <
d
dρJf (ρv)

Jf (ρv)
dρ ≤

∫ r

r0

∣∣∣∣ ddρJf (ρv0)
∣∣∣∣ dρ

≤ (δ2 + ε)
∫ r

r0

((n+ 1)ρ+ 2α)
(1 + ρ)α−

n+3
2

(1− ρ)α+ n+3
2

dρ

= (δ2 + ε)

[
(1 + r)α−

n+1
2

(1− r)α+ n+1
2

− (1 + r0)α−
n+1

2

(1− r0)α+ n+1
2

]
.

Thus

(3.8) |Jf (rv0)| − |Jf (r0v0)| ≤ (δ2 + ε)

[
(1 + r)α−

n+1
2

(1− r)α+ n+1
2

− (1 + r0)α−
n+1

2

(1− r0)α+ n+1
2

]
.

Multiplying both sides of this inequality by (1−r)α+ n+1
2

(1+r)α−n+1
2
, we obtain as

r → 1−,

lim
r→1−

|Jf (rv0)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

≤ δ2 + ε,

which, in view of the definition of δ0, gives δ0 ≤ δ2. From inequality (3.7) it
also follows that for v0 ∈ ∂Bn and r ∈ [0, 1)

(3.9)
∣∣∣∣ ddrJf (rv0)

∣∣∣∣ (1− r)α+ n+3
2

((n+ 1)r + 2α)(1 + r)α−
n+3

2

≤ |Jf (rv0)| (1−r)α+ n+1
2

(1+r)α−
n+1

2

.
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From this by the definition of δ0, δ2, we deduce that δ2 ≤ δ0. Hence δ2 = δ0.
Similarly, we show that δ3 = δ0, where

δ3 = lim
r→1−

M(r,
d

dr
Jf (rv))

(1− r)α+ n+3
2

((n+ 1)r + 2α)(1 + r)α−
n+3

2

.

It remains to show that the first limit appearing in (3.2) does exist, but
we will do it latter.

Now, we will prove equalities (3.3).
First, observe that we can replace the integrals∫ r

0

M(ρ,
d

dρ
Jf (ρv))dρ

(1− r)α+ n+1
2

(1 + r)α−
n+1

2

,

∫ r

0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ (1− r)α+ n+1

2

(1 + r)α−
n+1

2

by the integrals∫ r

r0

M(ρ,
d

dρ
Jf (ρv))dρ

(1− r)α+ n+1
2

(1 + r)α−
n+1

2

,

∫ r

r0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ (1− r)α+ n+1

2

(1 + r)α−
n+1

2

,

with an r0 ∈ [0, 1). This follows directly from the additivity of the integral
and the fact that limr→1−(1− r)α+ n+1

2 = 0.
We now start with the proof of the first equality in (3.3). From (3.8) it

follows that for every ε > 0 there exists a number r0 ∈ [0, 1) such that for
r ∈ [r0, 1)

|Jf (rv0)| − |Jf (r0v0)| ≤ p(r) ≤ (δ2 + ε)

[
(1 + r)α−

n+1
2

(1− r)α+ n+1
2

− (1 + r0)α−
n+1

2

(1− r0)α+ n+1
2

]
,

with

(3.10) p(r) =
∫ r

r0

M(ρ,
d

dρ
Jf (ρv))dρ.

Multiplying both sides of the last inequality by (1−r)α+ n+1
2

(1+r)α−n+1
2
, we obtain, as

r → 1−,

δ0 ≤ lim inf
r→1−

p(r)
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

≤ lim sup
r→1−

p(r)
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

≤ δ0 + ε.

Thus

(3.11) lim
r→1−

p(r)
(1− r)α+ n+1

2

(1 + r)α−
n+1

2

= δ0.
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Now, we will prove the second equality in (3.3). From (3.8) it follows that

|Jf (rv0)| − |Jf (r0v0)| ≤
∫ r

r0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ ≤ p(r).

Multiplying both sides of the last inequality by (1−r)α+ n+1
2

(1+r)α−n+1
2
, we have, as

r → 1−,

δ0 ≤ lim
r→1−

∫ r

r0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ (1− r)α+ n+1

2

(1 + r)α−
n+1

2

≤ δ0.

Thus

lim
r→1−

∫ r

r0

∣∣∣∣ ddρJf (ρvo))
∣∣∣∣ dρ (1− r)α+ n+1

2

(1 + r)α−
n+1

2

= δ0

Now we will show the existence of the first limit appearing in (3.2).
To this end we use the following two results:

Lemma 1 ([HAR, Thm. 112]). Let p be a differentiable function of the
variable r ∈ [0, 1) such that p′(r) does not decrease. If for a positive real
number β > 0, limr→1− p(r)(1−r)β = γ > 0, then limr→1− p

′(r)(1−r)β+1 =
βγ.

Lemma 2 ([CHA]). Let Ω ⊂ Cn be a bounded domain and:
(i) h = (h1, ..., hn) : Ω → Cn is a holomorphic mapping in Ω and contin-

uous on Ω, having no zeros on ∂Ω, whereas in Ω it has only isolated zeros of
order k in the following sense: h(a) = 0, the functions hj , j = 1, ..., n expand
in some neighborhood ‖z − a‖ < r in a series of homogeneous polynomials∑∞
l=kQjl(z − a) and the system of equations Qjk(w) = 0, j = 1, ..., n has

only the trivial solution,
(ii) g : Ω → C is a holomorphic function in Ω, continuous on Ω, such

that if a is an isolated zero of order k of the mapping h, then the function
g has a zero of order no less than k at a.

Then the function

p(z) = lim sup
Ω3w→z

|g(w)|
‖h(w)‖

, z ∈ Ω,

satisfies the maximum principle in Ω in the following sense

sup
z∈Ω

p(z) = sup
z∈∂Ω

p(z).
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Now, observe that Lemma 2, (Ch¡dzyński’s maximum principle), gives
the equality

max
‖z‖≤r

|DJf (z)(z)|
‖z‖

= max
‖z‖=r

|DJf (z)(z)|
‖z‖

.

We conclude from this that M(r, ddrJf (rv)) is a non-decreasing function of
the variable r ∈ [0, 1), because

M(r,
d

dr
Jf (rv)) = max

‖z‖=r

|DJf (z)(z)|
‖z‖

.

This property of M(r, ddrJf (rv)) shows that the function p, defined in
(3.10), is differentiable, p′(r) = M(r, ddrJf (rv)) for r ∈ [0, 1) and p′ does
not decrease. We can now apply Lemma 1. Then, from (3.11) we obtain

lim
r→1−

M(r,
d

dr
Jf (rv))

(1− r)α+ n+3
2

((n+ 1)r + 2α)(1 + r)α−
n+3

2

= lim
r→1−

p′(r)(1− r)α+ n+3
2

1

((n+ 1)r + 2α)(1 + r)α−
n+3

2

= δ0.

This completes the proof of part (ii) of our theorem.
We will now prove part (iii).
If f belongs to Uα and satisfies condition (3.6), then δ0 = 1, because

lim
r→1−

|Jf (rv0)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

= 1.

Let us now assume that for a mapping f∗ ∈ Uα we have δ0(f∗) = 1 and
v0 = (1, 0, ..., 0), that is

lim
r→1−

|Jf∗ (rv0)| (1− r)α+ n+1
2

(1 + r)α−
n+1

2

= 1.

Then, from part (i) of claim it follows that

(3.12) |Jf∗ (rv0)| =
(1 + r)α+ n+1

2

(1− r)α−
n+1

2

= F (r),

because Jf∗ (0) = 1. Let us denote Jf∗ (z1v0) = F (z1)eiψ(z1), where ψ(z1)
is a function holomorphic in the unit disc ∆. From (3.12) it follows that
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the values of ψ are real for z1 = r ∈ [0, 1). Let a1 ∈ ∆, a = a1v0 and
g∗(z) = Λϕa(f∗)(z). Then, ϕa(z) = a1−z1

1−a1z1
v0 and

|Jg∗ (z1v0)| =

∣∣∣Jf∗ ( a1−z1
1−a1z1

v0

)∣∣∣
|Jf∗ (a1v0)| |1− 〈z1v0, a〉|n+1

=

∣∣∣F ( a1−z1
1−a1z1

)
exp[iψ

(
a1−z1
1−a1z1

)∣∣∣
|F (a1) exp[iψ(a1)| |1− a1z1|n+1 .

Consequently,

(3.13)

< log Jg∗ (z1v0) =

<
{

logF
(
a1 − z1
1− a1z1

)
− logF (a1)− (n+ 1) log(1− a1z1)

+i
[
ψ

(
a1 − z1
1− a1z1

)
− ψ(a1)

]}
.

Let us put z1 = ρeis, s ∈ R, ρ ∈ [0, 1) in the above equality. If we denote
ws = eisv0 ∈ ∂Bn, then after the differentiation of (3.13) with respect to ρ,
we obtain at ρ = 0,

<
{
d

dρ
log Jg∗ ( ρws)

}
|ρ=0

= <

{
d
dρJg∗ ( ρws) |ρ=0

Jg∗ ( 0)

}

= <eis
{
F ′(a1)
F (a1)

(|a1|2 − 1) + (n+ 1)a1 + iψ′(a1)(|a1|2 − 1)
}
.

Since g∗ ∈ Uα, we get from (3.7)∣∣∣∣ ddρJg∗ ( ρws) |ρ=0

∣∣∣∣ ≤ 2α.

Thus ∣∣∣∣F ′(a1)
F (a1)

(|a1|2 − 1) + (n+ 1)a1 + iψ′(a1)(|a1|2 − 1)
∣∣∣∣ ≤ 2α.

Choosing a1 = r ∈ [0, 1) we obtain

(3.14)
∣∣2α+ i(1− r2)ψ′(r)

∣∣ ≤ 2α,
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because
F ′(r)
F (r)

=
(n+ 1)r + 2α

1− r2
.

However, ψ(r) is real, and so is ψ′(r). Thus, inequality (3.14) holds only
if ψ′(r) = 0. This equality with arbitrary r ∈ [0, 1) and the uniqueness
theorem imply ψ′(z1) = 0 for z1 ∈ ∆. Therefore, by the normalization
ψ(0) = 0 we obtain ψ(z1) = 0. Consequently, Jf∗ (z1v0) = F (z1).

In [GLS] it was shown that the mapping

f(z) = (
∫ z1

0

h1(ζ)dζ, z2h2(z1), ..., znhn(z1)), z = (z1, ..., zn) ∈ Bn,

belongs to Uα for all nonvanishing functions hj(z1), j = 1, ..., n, holomorphic
in ∆ and fulfilling the condition

n∏
j=1

hj(z1) =
(1 + z1)α−

n+1
2

(1− z1)α+ n+1
2

, z1 ∈ ∆.

Therefore δ0 = δ0(f) = 1 for this mapping f and every nonvanishing func-
tion h1 holomorphic in ∆ which generates such an f with δ0(f) = 1. �
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