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ABSTRACT

The dependence between the neural network struanaepredictive abilities of the
network is studied. To optimize the network struetwe introduce a method based on
the weight scaled backpropagation with a weightage®Ve analyze performance of this
method using the experimental nuclear data. Neme&lorks have been trained on a
defined set consisting of nuclear mass excessesch#ek the predictive power of such
learned networks on another set of nuclei not imedlin the training procedure. We
show that starting with networks consisting of &atigely large number of nodes one
can increase their predictive power with considbralkeduced complexity of the net-
work topology.
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1. INTRODUCTION

Artificial neural networks have became a very pepubol for solv-
ing a wide range of computational problems involyire.g., classifica-
tion, optimization and approximation tasks. Desptte popularity, the
mostly used feed-forward network architecture vk backpropagation
learning algorithm (BP) is suffering from variousffidulties. One of
them is frequently a low generalization ability. Uafly one expects that
the neural network (NN) trained on a subset of aysitic data will be
able to predict the remaining part of the data. Ewer, in many applica-
tions the networks generalize quite poorly. Espctae trained network
extrapolates systematic tendencies with small aaxur

One of the methods to overcome this deficiencyispply network
optimization techniques. In general, there are ulesr determining how
to choose the NN optimal structure for the paracytroblem. The sim-
plest method is based on construction of networils different architec-
tures (topologies) and evaluation of their predietabilities in numerical
experiment. But such a procedure is rather inedfiti Another possible
approach is to optimize the network structure awatically. In this paper
we describe such a technique based on the weiglatyd&VD) procedure
with self-scaling backpropagation (SSBP). The mdthoovides an easy
way to reduce the NN structure and to examine swahge of network
topologies from the point of view of their generaliion ability. Its de-
tails are described in Sec. 2. In the next twoisastwe discuss simula-
tion procedure and its results. Conclusions argvdria Sec. 5.

2. SELF-SCALING BACKPROPAGATION AND WEIGHT DECAY

The backpropagation is the most popular learningprithm for the
feed-forward neural networks. Architecture of suwtworks is defined
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a priori and not optimized for a particular problem whichshto be

solved. In general, the trained network demonstrat@or generalization
ability: the errors for the learning set are muataber than those for the
test set.

There exist many modifications of the BP formulbbwing to obtain
NN with optimal structure. Most of them are based autting connec-
tions and units considered to be unnecessary dfes. a defined train-
ing procedure the final structure of NN is expediegossess larger gen-
eralization ability than the starting network. Camgr simulations sup-
port such an observation.

In our simulations the method based on the weiglehgl [1] has been
used. In this approach an additional term is inooafed into the usually
used BP criterion function: besides the normal gatd errorE it con-
sists of the penalty term.

Eq = E+AYWE =Y (0, -t P AW, )
i k i

whereA is a decay parameter that determines the streofgtite penalty
term.

Minimizing criterion function (1) with respect tcheé connection
weight w;; leads to the weight change rule in each step efl¢larning
procedure:

_ _o0E _ .
Aw; —‘”ﬂ = A —ewy (2)
WhereAwi'j means the weight change for the BP training:
. O0E
AW =N g (3)

]

n is the learning parameter aad nA.
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A key idea of the method is to force some particml@ights to be-
come very small. Introducing a threshold value @hnections with
smaller weights are removed, and the unit with tn@uoutput connec-
tions completely removed is pruned. In the res@lswch a training pro-
cedure the skeletal network emerges.

In this paper we modify the backpropagation aldwnitadding the
so-called self-scaling term. Such a version of BBEP) displays some
desirable features discussed below. We proposeutbply each standard
weight change used in the BP approach by its abselalue. So, change
of the weight is always proportional to the weiglitsolute value. With
this modification learning formula (3) reads

dfil.
AVWJSS=‘”‘V‘4,1‘:—VI\Z=”‘V"'J‘(C'1 ‘yj)d—l(jl)ﬁ- (4)

During the network training procedure some weigrsreduced con-
siderably, while others remain relatively large.n@oning the SSBP and
WD approaches we postulate a new rule of the wedtange in the
following form:

_ oE _ — AW SS
Aw; —_W‘V\ﬁ,j‘a—wlj—rlAWij = A —Ew; . (5)
We use the algorithm based on Eq. (5) in our coempakperiment
described in Sec. 4.

3. DATA USED IN SIMULATIONS

Our simulations were carried out within 1,775 nudla which the
mass excess is experimentally known [2]. The masess is defined as
the difference between the atomic m&84Z, N) (measured in mass units)
and the mass numbér
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AM(Z,N)=M(Z,N)- A, (6)

whereZ(N) is a number of protons (neutrons). These experiaiedata
were divided into three different sets. First oknh containing 1,413
samples for nuclei with the proton number rangingnf 21 to 89 was
used in the training procedure. Other two sets wditzed in tests of the
predictive ability of the trained networks. Theynsgst of 196 lighter
nuclei with the proton number in the range 8-20 &66 remaining nu-
clei with the proton number in the range 90-10&pesxtively. Nuclei
with the number of protons below 8 were not useduncalculations due
to non-typical large fluctuations of their mass ess.

Each training pattern contained four inputs and ouagut. As an in-
put we have chosen four parameters characterib@garticular nucleus:
the number of protong, the number of neutrorns and their parities set
0(1) for even (odd) values, respectively.

4. SIMULATIONS

In the first stage of the learning procedure eaehlwork has been
trained with the standard BP method until the malimossible error was
obtained for the training data set. Then we used $$BP algorithm
to look for possible different network architectungth approximately
the same training error. In Table 1 we compare Itesaf simulations
obtained for different topologies of the one- tvamd three-hidden layer
perceptions. It is worth to note the reduction bé ttraining error of
10%-20% comparing the SSBP and BP approaches assvsbme cut
of the connection number.



22 Marek Jaszuk and Wiestaw A. Kaiski

Table 1. Results of simulations for the standardkpeopagation method (BP)
and for the self-scaling backpropagation (SSBP)ffelbént topologies with
4 inputs and 1 output and 1-, 2- and 3-hiddeelsyare presented

Initial network | _ Weight Training RMSE | RMSE test| RMSE
number afte o
topology . method training set setl test set 2
training

4-10-10-1 150 BP 0.43 25.2 5.5
4-10-10-1 144 SSBP 0.38 22.6 4.7
4-20-1 100 BP 11 47.5 14.1
4-20-1 90 SSBP 0.91 34.8 15.7
4-20-20-1 500 BP 0.35 23.4 11.4
4-20-20-1 495 SSBP 0.27 21.2 16.9
4-10-10-10-1 250 BP 0.33 16.8 16.2
4-10-10-10-1 246 SSBP 0.24 16.5 13.3

The generalization ability for both algorithms ather poor. One ob-
serves some cut of weights caused by pruning wWiéhthreshold value
T =1-10° for the SSBP approach, but the reduction is ndicaable.
From the inspection of weight values it follows thia the standard BP
weights do not reach values comparable with thesthold.

In the second phase of our simulations the weigdtagl algorithm
was used for the networks trained with SSBP. Atlibginning the decay
factorA was chosen sufficiently small for not influencitige network
structure considerably. Then the factor was grdguatreased. During
the computer experiment the learning nateas held to be 0.2. And each
weight becoming smaller than the threshold was readdrom the net-
work. In consequence, unit which lost all of itgun or output connec-
tions was cut off.

We also test another possible procedure for op#tion of the NN
architecture using the untrained network as aistaretwork. Our simu-
lations show that such a method is less effectwé eonsuming much
more CPU time in the training phase of the compabgreriment. The
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training procedure is also more complicated, beeath® decay factor
makes difficult to find the proper global minimunf the error function.
As mentioned by other authors (see, e.g., [3]) tl@ssion of the algo-
rithm gives also worse predictive abilities of netks.
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Fig. 1. The decay factor against the number
of weights for different network topologies

Figure 1 shows the degree of networks complexityswe the decay
factorA. One can observe that the weight number of pdaicaetwork
becomes relatively close to each other whenAtlparameter grows. It is
worth noting that some parts of the curves presemd-igure 1 are hori-
zontal or vertical. For thelateau behaviour an increase of the decay
factor does not influence the network structuret &ceeding some val-
ues of theh parameter a kind of avalanche in the weight redacap-
pears. Similar dependence is observed if we lookifits of NN.

The dependence betweadnand predictive ability of particular net-
works is shown in Figures 2 and 3. We observe tinatbest predictivity
is achieved by NN for the decay factor abouthd does not depend on
the particular architecture.
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Fig. 2. The dependence between the decay factord generating
errors for the training and testing sets in a azfshe network with
two hidden layers containing 20 unitskeac
Although dependence between predictive abilitied aatwork opti-

mization seems to be not simple, in all investigatases we were able
to obtain more powerful networks than those inijiathosen. During
the WD process the error for the training set gravesistantly and
approaches that for the testing sets. The diffexdretween both errors is
noticeably small for the\ value mentioned above. Simultaneously, the
weight number for different networks varies in ttenge 17-20, while
the unit number ranges between 11 and 17. The tieducs relatively
large comparing with the initial networks. So, aren conclude that for
the particular problem discussed in this paperdamngtwork introduces
some amount of unnecessary connections deterigratioper prediction
make by NN.
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Fig. 3. Dependence between the decay fastand errors for
the training and test sets. The network with onddén layer
containing initially 20 neurons is presented

5. CONCLUSIONS

In conclusion, simulations discussed in the papewsthat the net-
work architecture chosead hoc is, in general, not optimal for the spe-
cific problem. The SSBP method proposed in thisepagffers an easy
and effective algorithm for studies of a wide rargenetwork architec-
tures. Our results confirm earlier observationd tieural networks with
optimized topology and relatively small number ofights are more ef-
fective during the generalization procedure thamerammplicated (larger
number of layers and units) ones.

There exists a number of similar methods leadinggtmized net-
work topologies. One of them is structural learnmih forgetting (SLF)
[4]. Authors studied this method in their previopesper [5]. Comparing
SLF with the algorithm presented here leads tolamdonclusions about
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the SLF approach. But the predictive power of nekntoained with SLF
seems to be smaller than for NN obtained in thdistipresented in this
article.
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