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ABSTRACT 

 
The dependence between the neural network structure and predictive abilities of the 

network is studied. To optimize the network structure we introduce a method based on 
the weight scaled backpropagation with a weight decay. We analyze performance of this 
method using the experimental nuclear data. Neural networks have been trained on a 
defined set consisting of nuclear mass excesses. We check the predictive power of such 
learned networks on another set of nuclei not involved in the training procedure. We 
show that starting with networks consisting of a relatively large number of nodes one 
can increase their predictive power with considerably reduced complexity of the net-
work topology.  
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1. INTRODUCTION 

 

Artificial neural networks have became a very popular tool for solv-

ing a wide range of computational problems involving, e.g., classifica-

tion, optimization and approximation tasks. Despite its popularity, the 

mostly used feed-forward network architecture with the backpropagation 

learning algorithm (BP) is suffering from various difficulties. One of 

them is frequently a low generalization ability. Usually one expects that 

the neural network (NN) trained on a subset of systematic data will be 

able to predict the remaining part of the data. However, in many applica-

tions the networks generalize quite poorly. Especially the trained network 

extrapolates systematic tendencies with small accuracy. 

One of the methods to overcome this deficiency is to apply network 

optimization techniques. In general, there are no rules determining how 

to choose the NN optimal structure for the particular problem. The sim-

plest method is based on construction of networks with different architec-

tures (topologies) and evaluation of their predictive abilities in numerical 

experiment. But such a procedure is rather inefficient. Another possible 

approach is to optimize the network structure automatically. In this paper 

we describe such a technique based on the weight decay (WD) procedure 

with self-scaling backpropagation (SSBP). The method provides an easy 

way to reduce the NN structure and to examine a wide range of network 

topologies from the point of view of their generalization ability. Its de-

tails are described in Sec. 2. In the next two sections we discuss simula-

tion procedure and its results. Conclusions are drawn in Sec. 5. 

 

 

2. SELF-SCALING BACKPROPAGATION AND WEIGHT DECAY 

  

The backpropagation is the most popular learning algorithm for the 

feed-forward neural networks. Architecture of such networks is defined  
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a priori and not optimized for a particular problem which has to be 

solved. In general, the trained network demonstrates poor generalization 

ability: the errors for the learning set are much smaller than those for the 

test set. 

There exist many modifications of the BP formula allowing to obtain 

NN with optimal structure. Most of them are based on cutting connec-

tions and units considered to be unnecessary ones. After a defined train-

ing procedure the final structure of NN is expected to possess larger gen-

eralization ability than the starting network. Computer simulations sup-

port such an observation. 

In our simulations the method based on the weight decay [1] has been 

used. In this approach an additional term is incorporated into the usually 

used BP criterion function: besides the normal quadratic error E it con-

sists of the penalty term. 
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where λ is a decay parameter that determines the strength of the penalty 

term. 

Minimizing criterion function (1) with respect to the connection 

weight wij leads to the weight change rule in each step of the learning 

procedure:  
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where '
ijw∆  means the weight change for the BP training:  
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η is the learning parameter and ε = ηλ. 
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A key idea of the method is to force some particular weights to be-

come very small. Introducing a threshold value all connections with 

smaller weights are removed, and the unit with input or output connec-

tions completely removed is pruned. In the result of such a training pro-

cedure the skeletal network emerges. 

In this paper we modify the backpropagation algorithm adding the  

so-called self-scaling term. Such a version of BP (SSBP) displays some 

desirable features discussed below. We propose to multiply each standard 

weight change used in the BP approach by its absolute value. So, change 

of the weight is always proportional to the weight absolute value. With 

this modification learning formula (3) reads  
   

 ( ) ( )
i

j

j
jjji

ij
ji

SS
ij x

Id

Ifd
ydw

w

E
ww −η=

∂
∂η−=∆ ,, . (4) 

   

During the network training procedure some weights are reduced con-

siderably, while others remain relatively large. Combining the SSBP and 

WD approaches we postulate a new rule of the weight change in the 

following form:  
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We use the algorithm based on Eq. (5) in our computer experiment 

described in Sec. 4. 

 

  

3. DATA USED IN SIMULATIONS 

  

Our simulations were carried out within 1,775 nuclei for which the 

mass excess is experimentally known [2]. The mass excess is defined as 

the difference between the atomic mass M(Z, N) (measured in mass units) 

and the mass number A.  
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where Z(N) is a number of protons (neutrons). These experimental data 

were divided into three different sets. First of them containing 1,413 

samples for nuclei with the proton number ranging from 21 to 89 was 

used in the training procedure. Other two sets were utilized in tests of the 

predictive ability of the trained networks. They consist of 196 lighter 

nuclei with the proton number in the range 8–20 and 166 remaining nu-

clei with the proton number in the range 90–108, respectively. Nuclei 

with the number of protons below 8 were not used in our calculations due 

to non-typical large fluctuations of their mass excess. 

Each training pattern contained four inputs and one output. As an in-

put we have chosen four parameters characterizing the particular nucleus: 

the number of protons Z, the number of neutrons N and their parities set 

0(1) for even (odd) values, respectively. 

  

 

4. SIMULATIONS 

  

In the first stage of the learning procedure each network has been 

trained with the standard BP method until the minimal possible error was 

obtained for the training data set. Then we used the SSBP algorithm  

to look for possible different network architecture with approximately  

the same training error. In Table 1 we compare results of simulations 

obtained for different topologies of the one- two- and three-hidden layer 

perceptions. It is worth to note the reduction of the training error of  

10%–20% comparing the SSBP and BP approaches as well as some cut 

of the connection number.  
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Table 1. Results of simulations for the standard backpropagation method (BP) 
and for the self-scaling backpropagation (SSBP). Different topologies with  
  4 inputs and 1 output and 1-, 2- and 3-hidden layers are presented 

Initial network 
topology 

Weight 
number after 

training 

Training 
method 

RMSE 
training set 

RMSE test 
set 1 

RMSE 
test set 2 

4-10-10-1 150 BP 0.43 25.2 5.5 

4-10-10-1 144 SSBP 0.38 22.6 4.7 

4-20-1 100 BP 1.1   47.5 14.1 

4-20-1 90 SSBP 0.91 34.8 15.7 

4-20-20-1 500 BP 0.35 23.4 11.4 

4-20-20-1 495 SSBP 0.27 21.2 16.9 

4-10-10-10-1 250 BP 0.33 16.8 16.2 

4-10-10-10-1 246 SSBP 0.24 16.5 13.3 

  

The generalization ability for both algorithms is rather poor. One ob-

serves some cut of weights caused by pruning with the threshold value 

T = 1·10–6 for the SSBP approach, but the reduction is not noticeable. 

From the inspection of weight values it follows that in the standard BP 

weights do not reach values comparable with the threshold. 

In the second phase of our simulations the weight decay algorithm 

was used for the networks trained with SSBP. At the beginning the decay 

factor λ was chosen sufficiently small for not influencing the network 

structure considerably. Then the factor was gradually increased. During 

the computer experiment the learning rate η was held to be 0.2. And each 

weight becoming smaller than the threshold was removed from the net-

work. In consequence, unit which lost all of its input or output connec-

tions was cut off. 

We also test another possible procedure for optimization of the NN 

architecture using the untrained network as a starting network. Our simu-

lations show that such a method is less effective and consuming much 

more CPU time in the training phase of the computer experiment. The 
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training procedure is also more complicated, because the decay factor 

makes difficult to find the proper global minimum of the error function. 

As mentioned by other authors (see, e.g., [3]) this version of the algo-

rithm gives also worse predictive abilities of networks. 

 
Fig. 1. The decay factor λ against the number  
of weights for different network topologies 

Figure 1 shows the degree of networks complexity versus the decay 

factor λ. One can observe that the weight number of particular network 

becomes relatively close to each other when the λ parameter grows. It is 

worth noting that some parts of the curves presented in Figure 1 are hori-

zontal or vertical. For the plateau behaviour an increase of the decay 

factor does not influence the network structure. But exceeding some val-

ues of the λ parameter a kind of avalanche in the weight reduction ap-

pears. Similar dependence is observed if we look for units of NN. 

The dependence between λ and predictive ability of particular net-

works is shown in Figures 2 and 3. We observe that the best predictivity 

is achieved by NN for the decay factor about 10–5 and does not depend on 

the particular architecture.  
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Fig. 2. The dependence between the decay factor λ and generating  
errors for the training and testing sets in a case of the network with  
          two hidden layers containing 20 units each 

Although dependence between predictive abilities and network opti-

mization seems to be not simple, in all investigated cases we were able  

to obtain more powerful networks than those initially chosen. During  

the WD process the error for the training set grows constantly and  

approaches that for the testing sets. The difference between both errors is 

noticeably small for the λ value mentioned above. Simultaneously, the 

weight number for different networks varies in the range 17–20, while 

the unit number ranges between 11 and 17. The reduction is relatively 

large comparing with the initial networks. So, one can conclude that for 

the particular problem discussed in this paper large network introduces 

some amount of unnecessary connections deteriorating proper prediction 

make by NN. 
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Fig. 3. Dependence between the decay factor λ and errors for 
the training and test sets. The network with one hidden layer  
   containing initially 20 neurons is presented 

  

 

5. CONCLUSIONS 

  

In conclusion, simulations discussed in the paper show that the net-

work architecture chosen ad hoc is, in general, not optimal for the spe-

cific problem. The SSBP method proposed in this paper offers an easy 

and effective algorithm for studies of a wide range of network architec-

tures. Our results confirm earlier observations that neural networks with 

optimized topology and relatively small number of weights are more ef-

fective during the generalization procedure than more complicated (larger 

number of layers and units) ones. 

There exists a number of similar methods leading to optimized net-

work topologies. One of them is structural learning with forgetting (SLF) 

[4]. Authors studied this method in their previous paper [5]. Comparing 

SLF with the algorithm presented here leads to similar conclusions about 
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the SLF approach. But the predictive power of network trained with SLF 

seems to be smaller than for NN obtained in the studies presented in this 

article. 
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