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Convoluting to a challenge function

ABSTRACT. Let A denote the class of functions f that are analytic in A =
{z : |z| < 1} and normalized by f (0) = f’ (0) — 1 = 0. The subclasses of A
consisting of functions that are univalent in A, starlike with respect to the
origin, and convex will be denoted by S, S* and K, respectively. In this
paper, we investigate conditions under which f € S* has a starlike inverse;

z
i.e., a g € S* for which the convolution f * g = 1T We also determine

conditions under which a fixed h € K can be expressed as h = f * g where

f and g are in S* (or S).

1. Introduction. Let A denote the class of functions f that are analytic in
A = {z:|z| < 1} and normalized by f (0) = f’ (0) — 1 = 0. The subclasses
of A consisting of functions that are univalent in A, starlike with respect
to the origin, and convex will be denoted by S, S* and K, respectively. For
h(z) =2+ " ,anz" € Aand § > 0, a -neighborhood of h is defined by

Ns(h) = {z—l—anzneAz Zn|an—bn! §5}-
n=2 n=2

In [12], St. Ruscheweyh introduced the notion of J-neighborhoods and
proved the following two results.
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f(z)+ez
1

+e€

Theorem A. If f € A is such that
le] <6, then Ns(f) C S*.
Theorem B. If f € K, then Ny, (f) C S*.

Theorem B shows that the well-known result Nj (z) C S* [6] can be
extended to claim the existence of neighborhoods of arbitrary convex func-
tions that consist of starlike functions. For extensions and generalizations
of the work that was initiated by St. Ruscheweyh, see [2], [4], [5], and [13].

For f(z) =24+ 2 ,bpz" € Aand g (2) =2+ > .-, cp2" € A, the con-
volution or Hadamard product of f and g is (f* g) (z) = 2+ Y ooy bpcpz™.
One motivation for looking at convolutions over various subclasses of A
was the Pélya-Schoenberg conjecture [8] that the convolution of two convex
functions is convex. In addition to proving the conjecture, St. Ruscheweyh
and T. Sheil-Small [9] showed that convolution with convex functions also
preserves the classes of starlike and close-to-convex functions. Such preser-
vation results enable us to determine geometric properties associated with
various operators that can be realized as convolutions with specific convex

is starlike for all e € C with

o 1
functions. For example, g (2) = >, %z" € K whenever Rey > 0
nT7

[10]. Hence, I (f) = f * g, yields that, for Rey > 0, the operator I (f) =
1 z
—:7 / 7= f (t)dt € S* whenever f € S*. Other operator applications
z 0
can be found in [1] and [15].

In another direction, one can specify a function g and define a class F
consisting of all f € F for which f x g satisfies a particular property. The
best known example of this is with the class of prestarlike functions of order
a, denoted by R, that was introduced by St. Ruscheweyh [11]: A function

f € A is prestarlike of order o for 0 < o < 1 if f (z/ (1-— 2)2(1_@) is

1
starlike of order . It is known [14] that R, C S if and only if a < 3

Note that H (z) = ] -

this paper, we investigate conditions under which f € S* has a starlike
inverse; i.e., a g € S* for which f*xg = H. We also determine conditions
under which a fixed h € K can be expressed nontrivially as h = f x g where
f and g are in S* (or 5).

is the identity function under convolution. In
z

2. Some preliminaries. In this section, we identify some subclasses F
and G of S* for which corresponding to each f € F there exists a g € G

z
such that fxg=

1—2z

2 + Bz? . .
Lemma 1. Let F (2) = = for Be C. Then Fg € S* if and only if
—z
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1
|B|§§01"B:—1.
1
Proof. If ]B|§§and |z| < 1, then
2F} (2) 1 1 3 1
R L =Re<1 — S >0
e{FB(Z)} e{ +1—z 1—|—Bz}>2 1—|B] = 7

1 A
while F_ (z) = z. To prove the necessity, suppose B = <3 + 5) e'f for

2 )
0<6§§and—7r<ﬁ<7r. Letz:rezewith0<r<1and@zw—ﬁ.

2
FOI'O<€<§,

1
2FL (2) 1 <3+5>T
Re Fp () = Re e id 1
G )
3
I 143 -9

. = <0
T2 2.3 2(2-3¢)

_ 2
asr — 1 ;forszg,

Re{zf%((;))}_f‘e{1+:ew B 1;}

1+ rcosf r
pr— _— %_
1+724+2rcos8 1—7r

2 1
asr — 17 . Finally, suppose that 8 =7 and 0 < e < g; ie, -1 < B< —3

1+3B2
4|B]

Re 2Fp(2)| _ 3 1 —|B]cosé 0
Fp(z) | 2 1+B2—-2|B|cost

Then (1 —3|B|) (1 —|B|) < 0 so that < 1; for z = €, we have

that

1+3B?
4|B]

1 1
Fp(0) = Fp <_B> = 0 and 5 € A. It follows that, for B # —1,

for < cosf < 1. If |B| > 1, then Fg is not univalent in A because

1
Fp ¢ S* when |B| > 3" O

Lemma 1 immediately yields a subclass of starlike functions whose in-
verses with respect to convolution are also starlike.
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Theorem 1. Let Q = {CGC:|C—1|§;}O{CGC:‘C—Q‘Sz}.
Then

oo 0
1
z+AE Z" e S* and Z+ZE z" e S*
n=2 n=2

if and only if A € Q.

A 2
Proof. Since z + A> >, 2" =z + 7 = Fa—1), taking B = A —1in
—z
Lemma 1 yields that z+A> 7, 2™ € S* if and only if A satisfies |4 — 1| <
1 1 1
30 A = 0. Similarly, taking B = i 1 yields that z + 1 Yot =

1 1
F4-1_1) is starlike if and only if A satisfies a1 1] < 3 which is equivalent
9 3
to A satisfying |A — 8‘ < 3 Combining the conditions leads to the desired

conclusion. 0O

17+ 4v/35
Remark 1. The circles that form the boundary of €2 intersect at 17;
which are on 0A.
z
1 1 P + ez 1
C 11 1. F < — - - @ .\ n e g
orollary 0?“|6|_4,f5(z) 1 z+1+zg o 2 E

and g =z+ (L +¢) Y .2, 2" € S*. Note that f. x g. =

1—2z
Proof. Taking A = 1+ ¢ in Theorem 1 yields that f. € S* and g. € S*

ifandonlyifsEQ—{(EC:K]g;}ﬂ{CEC: C—é‘g:} The

largest disk centered at the origin that is contained in §2 has radius 1 (|

Theorem 2. For n a fized integer, n > 2, let

1 1 in
= : < — . - < .
2 {CGC |<|4n}m{<€C ’< 16n2—1‘16n2—1}

If e € Qy, then F. (z) = % +e2"™ € S* and its inverse G¢ (z) = 1 G
-z -z
z" is also in S*.
1+e¢
Proof. For fixed n > 2, suppose that € € Q,, and F; (z) = %—i—ez” =z+
—z

o0 . o0 1
>, bzt Since Y opt k|1 — by = nle| < T F. € Ny <1iz> Con-

sequently, by Theorem B, F. € §*. Now G. = F__/14¢) € Ni4 (1 : )
—z
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< 4n
16n2 —1| ~ 16n2 —1°

1
1j_ ' < which is equivalent to
The latter holds since € € Q,,. O

whenever e —

Remark 2. To see that the result of Theorem 2 is best possible, suppose

1
that e = (—1)" % for some v > 0 and fixed n. Then, for F. as given
n
1 !
in Theorem 2, F!(z) = 1 + (=1) i +7)zn_1. Since F!(-1) =
—z

1 _12n—11
4+( ) 4( +7):_Z<QandF6/(0):1>0,F5’hasazeroinA

from which we conclude that F. ¢ S.

1
Remark 3. If || < ——, then € € §,,.
dn+1

The last example given in this section makes use of the following result
that is due to J. Lewis [7].

Theorem C. The function fy(z) = oo n=*2" € K when A > 0.

In view of Theorem C, if 0 < 5 <1, 5 (2) = z+> 0 ,n’2" € S* because
Jo ¢ s (Q)dC =2+ 00, 15EK Hence, if 0 < § < 1, ¢5 € S* and
o5 *x p_s = & with ¢_s5 € K.

z

Remark 4. Note that ¢1(2) = 2z + > - ,nz" the well-

(1—2)%

known Koebe function, has the convex function ¢_; (z) =z + oo, —2" =
n

—log (1 — 2) as its inverse.

3. Convex functions. Next we illustrate the important role played by

the identity function under convolutions when determining if neighborhoods
must contain starlike functions.

Theorem 3. Suppose H (z) = % and h(z) = z 4+ > sanz"
—z

= e PH (ewz) for 8 real. Then for each f € Ny (h) the function g

such that f = g = h is starlike. The result is sharp.

Proof. If f € Ny (h), we may set f(z) = z+ Y.~ 5 (an +€n) 2" where

2
{en}—, satisfies > 7 s ne,| < 9 For each n > 2, |a,| = 1 and |a,, + &,| >

1 8 oo n
1—|5n|21—§:§.Iff*g:h,theng(z): : > <

1—=2 n=2 4 +e,
24> 00, 2™ It follows that

9 — 9\ /2 1
<2 < (2)(2) =2
_S;ME |—<8> <9> 4

z" =

o0 o0

Zn|1—cn|:Zn

n=2 n=2

En
Ay +€n
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ie., g€ Ny (132’> By Theorem B, g € S* as needed.

1
To see that this is best possible, let f(z) = 1 = < + 5) 22 =
—z

% I
z+Y 5 by2"™ for some g, 0 < e < 36" Since

> 1 ¢ 2 1
1—b,|=201-(1-2-2)|=2 —_
Zn\ y ‘ ( 5 2)‘ 5Te<;

n=2

f € Ny <1Z> which, by Theorem B, yields that f is starlike. The
-z

(3+3)
: ) 2/ For ¢’ (2) =

inverse of this f is given by g (z) = 7 + S N\ 2
—z

1 1
) 2/ g (0) =1 while ¢/ (—1) = ~ —22) 2

§_E Z, 9 e
9 2

1T e T
9 2
1
2 <> = 0. Thus, ¢’ has a zero in A from which we conclude that g is not

even univalent in A. O
For functions in K other than rotations of

1 “_ the question arises as to
—z

whether the result of Theorem 3 will remain valid for perhaps a smaller than
2/9-neighborhood. We will show that a theorem of P. J. Eenigenburg and

F. R. Keogh (see Theorem 4, in [3]) answers this question in the negative.

Theorem D. If f(z) = z+ ) an,z™ € K and is not a rotation of H (z) =

n=2
——, then |an| — 0 as n — oo.
1-2
Theorem 4. Suppose that F(z) = z + Y o0 ,a,2" € A is such that
inf |a,| = 0. Then, for every 6 > 0, there exists an f € Ns(F) and a
n

ge A—S for which g* f = F.

Proof. Either there exists an integer k such that ax = 0 or ar # 0 for
each k > 2 and there exists a nonvanishing subsequence {anj }Oo , such that

lim a,, = 0.

j—00

Suppose that aj, = 0 for some k > 2. For § > 0,let f (2) =2+ 0y bp2"
0
with b, = a, for n # k and b, = 7 Then f € N;(F) and g(z) =
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1 — k2b=1 4 22k — fzht!
— 2% € Asatisfies fxg = F. Since ¢’ (2) = z (1+ ;’2 z 7
-z

1
if (1,(s, ..., ka1 are the k + 1 roots of ¢’, then H]?H ¢ = z < 1. Thus, at

1—2z

j=1
least one of the (; is in A from which we conclude that g ¢ S.
Suppose that there exists a nonvanishing subsequence {anj };’;1 with

lim a,; = 0. Then, for § > 0, we can choose fixed k large enough so that
j—o0

lag| +% < g and set g = %exp (iargag). Let f(z) = 2+ > o obp2"
with b, = a,, for n # k and by, = ay + €. Then f € Ns(F) and g(z) =

1 j . —ﬁzk € A is the only function for which fxg = F. Now ¢’ (z) =
1 . ke -1 _ 1 . 1 el _ 1 . Ak
(1-2) ap + €k (1—2) ‘%H‘% (1-2)
_ P (2)

where A > 2. In this case, ¢’ (2) where Py is a polynomial

(1-2)°

of degree k + 1 and, if (1,(s,...,(x+1 are the k + 1 roots of Pyx,1, then

j=1
Hence. g ¢ S as needed. O

H]?H IG5 = 1< 1. Again, we conclude that ¢’ has at least one root in A.

Remark 5. Note that, in Theorem 4, we did not require that the function
F be convex. From Theorem D, we have that Theorem 4 holds for any

convex function that is not a rotation of 7 .
-z

4. Some open questions. In Section 2, we looked at f,g € S* for which
fxg= % Are there characterizing conditions for a subclass of S* that
—z

consists of functions and their inverses by convolution?

In Section 3, we gave a characterizing condition for the existence of a
neighborhood Ny of a convex functions h such that for f € Ns, there exists
a unique g € S* such that f*g = h. Our next example gives an h € 5* — K
for which such a neighborhood exists.

Example 1. Let h(z) = z+ (1.01) Y72, 2". Then h € S* — K in view of

Lemma 1 agd the Well—knownlcgiefﬁcient bound for convex functions. From

Lemma 1, hiz)tez =z+——> 7 ,2" € S* for [e] < .2. Hence, from
1+e¢ 1+e¢

Theorem A, Ns(h) C S* for 6 = .2. For f € N;(h), we can set f(z) =

z+ Y. (1.0l 4+¢,) 2" where {e,},-, is such that >~ ,nle,| < .2. If
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z . En
- _ __nth — h and
9(2) = 7=, ~ 2=z gy o, then frg=han
> En > len| 2 20 1
Z”101 = 5= 101—1 91 -4
o 2 1.01—" o

Therefore, g € S*.

Is there some characterizing condition for a subclass F of functions in
S* such that h € F admits a d-neighborhood for which f € Ns (h) implies
that there exists g € S* such that f g = h?

Given h € S, what can we say about f,g € S for which f % g = h? Since

f(2)xg(2) = f(@2) 7 (fz), |z| = 1, if a condition holds for f and g, then
x T

it holds for rotations. .
For every h € S, h x 1

= h. To what extent does the identity

z
function 7 play a unique role? That is, are there any functions h € S

for which the univalent convolution f x g = h can occur only if f or g
is the identity? The Koebe function can be written as z + >~ ,nz" =
(z+ >0 ,n?2) * (z+ Yoo ,n!t™2") for A € [0,1]. The next result gives
a class of functions that can be realized_as the convolution of two functions

in S neither of which is the identity %
—z

Theorem 5. Let h(z) =2+ > o ,a,2™ € S. If (i) there exists k > 2 for
which ar = 0 or (ii) there exists a 6 > 0 for which N5 (h) C S, then there

exist functions f and g in S — {1Z} such that f *g = h.

1
1jz + @zk and g = h. Since

f€N1/4 (z) C S, it follows that f,geS—{Z} and f*xg=nh
l1—=2 1-=2

as needed. Now, suppose that Ns(h) C S for some 6 > 0. In view of
the last example, we may assume that a, never vanishes. Then for a fixed

Proof. If ay = 0 for some k, set f(z) =

o 1

k > 2, choose € > 0 small enough so that |¢| < — and < < —. Then
k a + € 4k

f = h+ezF € S from the hypothesis, g = ( GE zk> € S*, by
1—2 ap+e

Theorem B, and fxg=~h. O
1
It is known [12] that, for h € S* <2>, the class of functions that are

starlike of order 1/2, Ny,4 (h) consists of close-to-convex functions. This
leads to the following
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1
Corollary 2. If h € S§* (2>, then there exist functions f and g in S —

{Z} such that f * g = h.
1-=2
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