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Results obtained within Ciach-Høye-Stell model of oil-water-surfactant 
mixtures in restricted geometry are reviewed. Special attention is paid to 
phase transitions in semiinfinte and in slit geometries. Similarities and 
differences between simple fluids and self-assembling systems are 
higlighted. 
 

 
1. INTRODUCTION 

 
Mixtures of polar and nonpolar liquids, such as water and oil, phase separate 

at room temperatures. Amphiphiles added to such mixtures self-assemble into 
monolayers, separating the oil- and water- rich regions. In microemulsion the 
monolayers are not localized in space, and their formation is reflected in the 
form of the water-water (or oil-oil) density correlation function, which exhibits 
damped oscillations with the decay rate x  and periodicity nm10»l . For 
distances 10/1 << lr  this correlation function resembles the density-density 
correlation function in simple fluids for 10/1 << sr  [12]. For 1/ <lr  the 
shape of the correlation functions in microemulsion is different than in simple 
fluids for 1/ <sr , and reflects the fact that the water- or oil-rich domains of 
mesoscopic size, surrounded by amphiphilic monolayers, are soft and 
compressible rather than rigid. In ordered phases ¥®x , and the structure is 
periodically repeated in one (lamellar phase) two (hexagonal phase) or three 
dimensions (cubic phases). Due to anisotropy and periodic order of these 
phases on the one hand, and their softness and liquid nature inside the domains 
on the other hand, they resemble solids of very large unit cells, where hard 
atoms are replaced by soft domains, surrounded by monolayers which behave 
as elastic membranes [2,3]. 
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A single external surface (e.g. a wall of a container) disturbs the structure of 
the fluid in the near-surface layer of a thickness comparable to a bulk 
correlation length x . For this reason confinement plays a significant role when 
the size of the system becomes comparable to x . The structure in self-
assembling systems is characterized by large typical lengths, often two orders 
of magnitude larger than the molecular sizes [1,4]. The deformations of the 
structure are thus expected for distances from the wall two or three orders of 
magnitude larger than in simple fluids, and the finite size effects are expected 
for much larger systems. Effects of boundaries are particularly strong close to 
phase transitions. Discontinuous transitions in the bulk are accompanied by 
wetting and capillary condensation phenomena in confinemet. The latter 
phenomena in simple fluids have drawn much attention in the recent  
years [5-7].  

Here we describe ordering and disordering effects of a single planar wall 
and of slit-like geometry on self-assembling systems. We pay particular 
attention to lamellar phases and lamellar-microemulsion or lamellar-water/oil 
phase boundaries. In confinement the tendency for formation of various ordered 
periodic structures can be enhanced or de-enhanced depending on chemical 
nature, shapes, structure or size of the boundaries of the system. In the lamellar 
phases the planes describing average positions of surfactant monolayers are 
parallel to each other. The monolayers undulate, and near a coexistence with 
microemulsion numerous passages between the nearest monolayers are formed. 
In microemulsions the monolayers strongly fluctuate and are interconnected, so 
that the whole system is isotropic. This very complex structure makes the 
problem of effect of boundary conditions very difficult.  

We shall discuss wetting and capillary condensation on general gronds. The 
self-assembly of amphiphiles into monolayers occurs in a broad class of 
systems. Remarkable similarity between particular properties of all such 
systems can be observed, provided that one end of the solute particles attracts 
polar and repulses nonpolar particles, whereas the other end does the opposite. 
This property of the interactions is necessary and sufficient for self-assembly 
into bilayers or monolayers, if the amphiphilic interactions are sufficiently 
strong. The features common for the whole class of the self-assembling systems 
should be described by generic models in which the irrelevant details of the 
interactions are just disregarded. We choose the lattice CHS model [9] 
described in sec 2. 

We shall discuss wetting and capillary condensation on general grounds in 
the following section. In sec. 2 we describe the CHS model and the calculation 
method which allows to verify our predictions by direct calculations. The paper 
is closed with a short discussion. 
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2. SELF-ASSEMBLING SYSTEMS IN RESTRICTED GEOMETRY; 
MODEL-INDEPENDENT CONSIDERATIONS 

 
A. Wetting. Consider first an attractive wall in contact with a gas phase. If the 
transition to liquid is approached, then a liquid-like layer is formed near the 
surface, and its thickness grows as 
 

||log mD»G         (1) 
 
where mD  is a chemical-potential distance from the gas-liquid coexistence. The 
above relation holds for any order-disorder transition in uniform systems 
exposed to a wall [5,6,16], and follows from the Landau-Ginzburg functional of 
the form 
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where h  is a suitable order-parameter (OP) for the corresponding order-
disorder transition. In the case of the gas-liquid transition h  is identified with 
the difference between liquid and gas densities. A crucial quantity for studying 
the wetting is the so called adsorption or coverage,  
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proportional to the thickness of the wetting layer. In the context of the liquid-
gas coexistence G describes the total amount of adsorbed liquid per area A of 
the confining surface. 

It is the way the surfactant monolayers are arranged in space, which 
distinguishes between the microemulsion and lamellar phases. A question that 
arises is whether the planar, hydrophilic surface leads to a formation of a 
lamellar layer, and whether the thickness of this layer grows according to Eq. 
(1), when the phase transition from microemulsion to the lamellar phase is 
approached. Recall the analogy between the complex system on the mesoscopic 
length scale and a simple fluid on the atomic length scale discussed in 
Introduction. On the length scale of the size of atoms the simple fluid exhibits 
the structure described by the pair-correlation function, and only on the larger 
length scale it is uniform. Similarly, on the length scale of 100» �  the complex 
system exhibits the structure as described by density distributions, and on the 
length scales larger than the period of density oscillations it is seen as a uniform 
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fluid. In the simple fluids the order parameter is the deviation of the local 
density from the average value in a region of a molecular size. By analogy, the 
order parameter in the complex system should be identified with a suitable 
description of the deviations of the density from the avarage value in a region 
of a linear size of the period of oscillations. In s -component systems exhibiting 
lamellar ordering the density of every component i  of the mixture, )(zir , 

oscillates around the average value )'('
'�
+

=
=

l
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z

zz ii zdz , where z  is the direction 

and l  is the period of the density oscillations. In Ref.[10,11] the OP for one-
dimensional structures (lamellar order) and for -s  component mixtures is 
defined as 
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In the bulk lamellar phase the shapes of )(zir  are the same in the whole 
sample, and )(zh  is a positive constant, proportional to the amplitude of the 
density oscillations. By definition, 0)( =zh  in the uniform phase. We have 
reduced the degrees of freedom related to the density profiles to just one 
number. This is analogous to reducing the atomic degrees of freedom on the 
atomic length scale to the local density deviations from the average value. 
Based on this analogy and following the general arguments of Landau, it is 
postulated in Ref.[10] that in the semiinfinite geometry the functional of h  
should have the form given by (2), but with the length unit equal to the period 
of the density oscillations, rather than to molecular size. 

The hypothesis that all the degrees of freedom except for h  given by (4) are 
irrelevant for the general features of the surface phenomena in the systems 
exhibiting self-assembly on the nanometer lengthe scale leads to the same 
behavior of G as in simple fluids, i.e. the thickness of the lamellar wetting layer 
grows according to Eq. (1). The predictions of the functional (2) can be 
explicitly tested for h  and G defined as discrete versions of Eqs. (4) and (3) 
respectively in the CHS model, as we describe in sec. 3. 
 
B. Capillary condensation. When the gas-liquid coexistence is approached 
from the gas side, condensation of a liquid-like phase takes place in narrow 
pores with adsorbing walls. At the capillary condensation the deviation of the 
chemical potential from the value at the bulk coexistence is related to the size 
of the slit-like pore L  by the Kelvin equation [7]. In simple fluids the Kelvin 
equation is obeyed even for quite small pore sizes[8]. Simple generalizations of 
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the Kelvin equation are valid in other uniform systems, for example in liquid 
mixtures, when a single order-parameter is relevant for the considered 
transition. 

Phenomena analogous to the capillary condensation occur also in complex 
systems. When a transition to a periodic structure is approached, it may 
condense in a pore for a particular chemistry of the confining walls. For 
example, a capillary condensation of a lamellar phase in water-surfactant 
mixtures was observed experimentally in slit-like pores when the sponge phase 
was stable in the bulk[12,13].  

The ordered phases are nonuniform on the nanometer length scale. The 
nonuniformity of the ordered phases is certainly important for slits such that 

l»L . The simple fluids are also nonuniform on the molecular length scale, 
still the Kelvin equation remains valid even up to molecular distances. Based 
on the analogy with simple fluids on the molecular length scale we postulate 
that the thermodynamic considerations should remain valid for the nonuniform 
phases for l10»L , provided that the density in the periodic structure is 
identified with the space-averaged density.  

The distance between the confining walls can be varied by a small fraction 
of the period of the ordered phase l  that condenses in the slit. Only for some 
particular values of L , namely for NLL = , corresponding to N  structural 
layers confined between the walls, which have the same structure as in the bulk, 
there is no stress in the system. Deformations present when NLL ¹  correspond 
to swelling or shrinking of the lamellar layers when the slit is expanded or 
compressed compared to NLL =  [1213,17]. When the expansion NLLL -=D  
is sufficently large, a new lamellar layer is introduced into the system, 

1+® NN . Both experimental [1213] and theoretical results [15-17] show 
elastic behavior of the swollen lamellar phases, analogous to a series of N  
identical joint springs for N  periods of the confined lamellar phase. 

Due to the elasticity of the periodic phases, the assumptions leading to the 
Kelvin equation (negligible solvation force) are not satisfied even for quite 
large pore sizes. For wall separations NLL ¹  significant violations of the 
Kelvin equation are to be expected. Grand thermodynamic potential in the slit 
of width L  and surface-area A  has the form 

 

exLA W+=W w/ , )(Lelex W+=W s     (5) 
 

where s  is the wall-fluid surface tension. For any periodic structure 
responding elastically to the applied stress the L -dependent contribution to the 
grand thermodynamic potential of the confined system containing N  structural 
units has the form 
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where B  is the modulus of elasticity. Note the very slow, 1-L , decay of 

)(LelW . Due to the long-range order of the phases which condense in the slit, 

for the wall distances NLL ¹  the external stress (6) is not released even for 

large L , in contrast to simple fluids. For the chemical potential coexm  and the 
temperature T  corresponding to the bulk coexistence the bulk densities of the 
grand thermodynamic potential W for the two phases are equal, 
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Superscripts u  and p  correspond to the uniform and the periodic phase 
respectively. At the capillary condensation in a slit of width L , for 

mmm D+= coexcc ,  
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For the uniform phase the solvation force can be neglected, and for sufficiently 
small mD  we obtain 
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where pu,s  denotes the surface tension between the wall and the respective 
phase. The pu,r  are thermodynamic densities satisfying the relation 

rmw =¶¶ NT ,)/( . In incompressible mixtures (for example in solutions 

containing surfactants or lipids) pu,r  correspond to space-averaged solute 
densities. From (9) we obtain the modified Kelvin equation  
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where pu sss -=D  and up rrr -=D . The above MKE should be valid for 
any elastic system condensing in slit-like pores. 

For the equilibrium wall separations, NLL = , corresponding to no stress, 
the second term in (10) vanishes and (10) reduces to the usual Kelvin equation. 

 
3. CHS MODEL RESULTS 

 
Here we concentrate on the lattice model introduced by Ciach, Høye and 

Stell (CHS). The model is designed for a description of the balanced systems, 
with vanishing spontaneous curvature of the surfactant monolayer. In such 
systems oil and water play effectively symmetrical roles. Every lattice site is 
occupied by either oil-, water-, or an amphiphile. Microscopic densities are 

)0(1)(ˆ =rir  if the site r  is (is not) occupied by the specie i , where 2,1=i  refer 
to water and oil respectively, and 2>i  refers to surfactant molecules in 
different orientations. In fact we consider clusters of molecules in the 
semimicroscopic, coarse-grained description. Close-packing and oil-water 
symmetry are assumed ( 21 mm = ). Different orientations of the surfactant 
particles are treated as different components having the same chemical 
potential sm . Only one chemical potential variable is relevant in the case of 

close-packing, namely ss mmmmm -=-= 21 , with is mm =  for 2>i . The 

Hamiltonian in a presence of external fields )(xih  can be written as: 
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The )©( rr -ijU  is the interaction energy between the specie i  at r  and the 

specie j  at r ’ . We assume nearest-neighbor interactions. Except from the 
water-water (oil-oil) interaction b-  the water-amphiphile (oil-amphiphile) 
interaction )ˆ(ˆ urur ×D+×D- cc  is assumed, with û  describing the orientation of 
the amphiphile located at the distance rD  from the water (oil) particle. The 
amphiphile-amphiphile interaction has the form ))]©(©ˆ())©(ˆ[( rrurru -´×-´g , 

where û  )©ˆ(u  is the orientation of the amphiphile located at r  (r ’ ). The above 
interaction supports formation of flat monolayers (vanishing spontaneous 
curvature), with amphiphiles parallel to each other and perpendicular to the 



44 A. Ciach  

surface they occupy. The lattice constant is 1ºa , and is identified with the size 
of the amphiphiles. Finally, the surface external field is defined as  
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where in the above expression )©(rjr  for V¶Î©r  are fixed, external 

conditions. Here we focus on 1)(1 =rr , 0)( =¹ rjir  at the walls, i.e for 

V¶Îr . 10 << sh  describes surfaces ranging from neutral to water-covered. 
In contrast to the phenomenological approach, once the interaction 

parameters are fixed in the CHS model, there are no other parameters which 
could be fitted to the experimental results. The only other parameters in this 
approach are the thermodynamical variables. 

It is impossible to solve the CHS model exactly except for one-dimensional 
systems. In practice one can obtain approximate results within a mean-field 
(MF) theory or by MC simulations. Within the MF approximation the 
microscopic configurations )(ˆ xir  occur with a probability proportional to the 
Boltzmann factor 
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rf  is the mean field and )(xir  is the MF-

average of )(ˆ xir , introduced here to compensate for double counting of pairs 
of sites. The grand thermodynamic potential in MF takes the form: 
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where bTkb /=t  is the temperature in the energy unit, b/mm= , and W is 
also measured in units of b . 

Important feature of the CHS model is the fact that no assumptions 
concerning the geometry and topology of the surfactant monolayers are 
necessary. The Boltzmann factor (12) automatically discriminates between the 
relevant and irrelevant states.  

The hydrophilic surface breaks symmetry, and we can distinguish two 
different classes of orientations of amphiphiles, corresponding to the positive or 
the negative sign of the scalar product nu ×̂ , where n̂  is the vector normal to 
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the surface. In the first class of orientations the head, and in the second class 
the tail of the amphiphile is oriented towards the wall. Also, the one 
dimensional description can be applied as in standard wetting theories, if one 
assumes that the average densitites in the surfaces parallel to the external 
surface are constant. 

In order to test the predictions, concerning the wetting and capillary 
condensation phase transitions in self-assembling systems, we have to find 
global minima of W for different values of m and L . Moreover, the value of 
m at the bulk phase transition has to be found with a very high precision. In the 
case of wetting we cannot directly consider the semiinfinite system. Instead, we 
consider NLL =  with 310»N , so that there is no stress in the system. For 
small L  the capillary condensation occurs before the wetting layers are formed, 
and we need very large L  to verify Eq.(1). Local minima of W can be 
determined by solving numerically the equation 

 

MFii )(ˆ)( xx rr =        (14) 

 
where the probability distribution is given by the Boltzmann factor (12). Self-
consistent solutions of (14) can be found by means of iterations with different 
initial configurations. The structure corresponding to the lowest value of W is 
identified with the stable phase. In Figures 1-3 we show density profiles far and 
close to the phase coexistence.  

We have compared the numerically obtained coverage (3) as a function of 
mD  with the form (1). The numerical results (Figure 4) show perfect agreement 

with the prediction (1), and hence the same behavior as in simple fluids is 
confirmed. 

The excess grand potential is shown in Figure 5 and the deformations of the 
lamellar structure corresponding to compression and expansion of the slit are 
shown in Figure 6. In order to find the analog of capillary condensation, we 
have determined for what values of L  and mD  the grand-potential values 
corresponding to the lamellar and the water-rich phases are equal. The obtained 
dependence between mD  and L  agrees quite well with the simple prediction 
(10), provided that L  is sufficiently large, l4>L , and is replaced by lL 2-  in 
(10), where l  is the thickness of the lamellar film adsorbed at the hydrophilic 
surface, when the water-rich phase is stable in the slit (see Figures 7 and 8). 
Indeed, in the presence of lamellar films at the walls the slit which can be filled 
with water is effectively thinner. 
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Fig. 1. The thermodynamic variables bTkb / , b/m  correspond to stability of the 

microemulsion ( 8.2/ =bTkb , b/m =4.4214, 4/ =bc , 0=g ). The distance from the 

first-order transition between the microemulsion and the lamellar phase is 
1.0/|| =- bcoexmm . Walls are covered by water. a: the density of surfactant as a 

function of a distance from the wall in units of the lattice constant. b: lamellar OP h  as 

a function of a distance from the wall measured in units of the period of the lamellar 
structure. Dashed lines are to guide the eye.  
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Fig. 2. The vicinity of the first-order transition from the microemulsion to the 
lamellar phase ( 8.2/ =bTkb , 3214.4/ =bm , 4/ =bc , 0=g , =- bcoex /|| mm  

0003.0 ). Walls are covered by water. a: the density of surfactant as a function of a 
distance from the wall in units of the lattice constant. b: lamellar OP h  as a function of 

a distance from the wall measured in units of the period of the lamellar structure. Dashed 
lines are to guide the eye.  
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Fig. 3. The vicinity of the first-order transition from the lamellar phase to the 
microemulsion ( 8.2/ =bTkb , b/m =4.3203, 4/ =bc , 0=g , =- bcoex /|| mm  

0008.0 . Walls are not preferential for any state i , i.e. 1-=ih  for 4,3,2,1=i . a: the 

density of the surfactant as a function of a distance from the wall in units of the lattice 
constant. b: lamellar OP h  as a function of a distance from the wall measured in units of 

the period of the lamellar structure.  
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Fig. 4. Excess lamellar OP lG  at constant temperature 8.2/ =bTkb , 4/ =bc , 

0=g  in the case of water-covered walls. (a) as a function of the dimensionless 

difference between m and its value at the bulk phase transition mD ; capillary 

condensations for different L  are indicated by the dashed lines. b: as a function of 
)log( mD . 
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Fig. 5. Thermodynamic variables bTkb / , m and the material constant c  

correspond to stability of the swollen lamellar phase with 13=l , 84.0/ =bTkb , 

b/m  =0.774, bc / =1, g =0). The distance from the first-order transition between the 

water-rich and the lamellar phases is bcoex /|| mm- =0.003. Walls are covered by 

water. a: excess thermodynamic potential exW  (in units of 2/ ab ), as a function of the 

wall separation measured in units of the lattice constant a . b: solvation force f  (in 

units of 3/ ab ) as a function of the wall separation. Dashed lines are to guide the eye.  
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Fig. 6. The thermodynamic variables bTkb / , m and the material constant c  are 

bTkb / =0.84, b/m =0.774, bc / =1). Walls are water-covered. top: the density 

distribution of water between the walls for the separation 54=L . The period of the 
density oscillations is 11. bottom: the density distribution of water for the wall 
separation 65=L . The lamellar phase is stretched with the period of the oscillations 
equal to 13.75.  
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Fig. 7. Shift of the first-order transition between water-rich and lamellar phases as a 
function of the wall separation aL / , where a  is the lattice constant. The solid line is 
the curve given by (10) with L  replaced by lL 2- . The optimal value of the fitting 

parameter l  is 6.205. sD  =0.000527 2/ ab , rD  = 0.003124 have been obtained by 

independent calculations of the surface tensions and the space-averaged densities at the 
bulk phase-coexistence. The temperature of the system is bTkb /  = 2.7 and the material 

constants are 2/ =bc , bg /  =0.15. The bulk first-order transition is at 

bcoex /m =4.1541978.  
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Fig. 8. The density distribution of surfactant (top) and water (bottom) between the 
walls for the separation 83=L . The thermodynamic variables bTkb / , b/m  and the 

material constants bc / , bg /  of the system correspond to stability of the water-rich 

phase bTkb / =2.7, b/m =4.1566, bc / =2.4, bg / =0.15). The distance from the first-

order transition between the water-rich and the lamellar phases is 
bcoex /)( mm- =0.0024. Walls are covered by water.  

 
 

4. DISCUSSION 
 
Based on the structure factor of microemulsions, we have realized the 

analogy between simple fluids on a microscopic length scale and self-
assembling systems on the mesoscopic length scale. We have also noticed the 
difference between these systems on the respective length scales -- namely, the 
molecules are ©hard©, whereas the water- or oil-rich domains are ©soft©, i.e. the 
domains can change their shape under external stress, since they contain many 
molecules and are surrounded by surfactant monolayers, which behave as 
elastic membranes. 



54 A. Ciach  

The similarities between simple and self-assembling fluids are clearly seen 
in semiinfinte geometry - the wetting behavior is described by the same law (1) 
in the simple and the complex fluids. The domains behave like molecules in the 
absence of external stress. This observation has been confirmed by explicit 
calculations in the CHS model. 

In contrast, when the external stress is applied and the self-assembling 
system is confined between parallel walls separated by a distance incompatible 
with the period of the structure, then the lamellar phase exhibits a solid-like 
behavior, and responds elastically to the stress. The elastic contribution to the 
grand-potential leads to a delayed condensation of the lamellar phase when the 
width of the slit is incompatible with the period of the lamellar phase in the 
bulk. The solid-like response to compression or expansion leads to a 
modification of the Kelvin equation (10). Note, however that the periodic 
structure, and the associated nonuniform density distributions on the nanometer 
length scale, have no effect on the Kelvin equation for NLL = , once the space-
averaged densities are taken into account. The modification of the Kelvin 
equation, Eq.(10), has been confirmed in the CHS model, with the modulus of 
elasticity, surface tensions and the solute densities all determined by 
independent calculations. 

There is another, solid-like feature of the lamellar phases, namely their 
anisotropy. This property leads to a new phase transition, absent in simple 
fluids. This transition takes place between very weakly hydrophilic surfaces. 
When the wall separation corresponds to strong deformations of the lamellar 
structure, then a switch to a perpendicular orientation of the lamellas takes 
place. In the perpendicular orientation the period of the lamellar phase can be 
the same as in the bulk, but the surface tension is somewhat higher. When the 
slit is expanded, a sequence of switches between parallel and perpendicular 
orientation of lamellas takes place. We have found such a transtion in the case 
of small-period lamellar phases (surfactant-concentrated systems) in the CHS 
model in Ref. [18]. 

We stress that despite the complex structure on the nanometer length scale, 
the equations describing the analogs of wetting and capillary condensation in 
self-assembling systems are remarkably simple. 
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