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On covering problems
in the class of typically real functions

Abstract. Let A be a class of analytic functions on the unit disk ∆. In this
article we extend the concept of the Koebe set and the covering set for the
class A. Namely, for a given D ⊂ ∆ the plane sets of the form⋂

f∈A

f(D) and
⋃

f∈A

f(D)

we define to be the Koebe set and the covering set for the class A over the set
D. For any A and D = ∆ we get the usual notion of Koebe and covering sets.
In the case A = T , the normalized class of typically real functions, we describe
the Koebe domain and the covering domain over disks {z : |z| < r} ⊂ ∆ and
over the lens-shaped domain H = {z : |z + i| <

√
2} ∩ {z : |z − i| <

√
2}.

Introduction. Let A be the family of all analytic functions f on the unit
disk ∆ = {z ∈ C : |z| < 1}, normalized by f(0) = f ′(0) − 1 = 0, A ⊂ A
and let D be a subdomain of ∆ with 0 ∈ D. The plane sets KA(D) =⋂

f∈A f(D), LA(D) =
⋃

f∈A f(D), KA = KA(∆) and LA = LA(∆) we shall
call the Koebe domain for the class A over the set D, the covering domain
for the class A over the set D, the Koebe domain for the class A and the
covering domain for the class A, respectively. Except some special cases,
the sets KA(D) are open connected and hence domains. Note that for
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A =
{

z 7→ 1
a
(eaz − 1) : a ∈ C \ {0}

}
and

B =
{

z 7→ 1
2n

[(
1 + z

1− z

)n

− 1
]

: n = m,m + 1,m + 2, . . .

}
,

m > 0, we have KA = {0}, and hence KA = {0}, and the sets KB are not
open. For many important classes, the Koebe domains were discussed in a
number of papers and some sharp results are well known (see [4] for more
details).
The determination of sets KA and LA is usually more difficult if the
considered classes are not rotation invariant, which means that the following
property

(1) f ∈ A ⇔ e−iϕf(zeiϕ) ∈ A for any ϕ ∈ R

is not satisfied.
For instance, (1) is not satisfied by each nontrivial class A with real
coefficients. One of them is the class T of typically real functions, i.e.
functions f ∈ A and satisfying the condition

Im z Im f(z) ≥ 0 for z ∈ ∆ .

The Koebe domain for the class T was found by Goodman [3].

Theorem A (Goodman). The Koebe domain for the class T is symmetric
with respect to both axes, and the boundary of this domain in the upper half
plane is given by the polar equation

%(θ) =

{
π sin θ

4θ(π−θ) for θ ∈ (0, π),
1
4 for θ = 0 or θ = π.

The covering domain for the class T is the whole plane because for mem-
bers f1(z) = z

(1−z)2
and f−1(z) = z

(1+z)2
we have f1(∆) ∪ f−1(∆) = C.

Clearly, each time if {f1, f−1} ⊂ A ⊂ A then C is the covering domain for
A. However, for many classes the covering domain may give some interesting
information (like for classes of bounded functions).
Basic properties of KA(D) and LA(D) established in the following two
theorems are easy to prove.
First, let us denote by ∂D the boundary of a set D. Moreover, we use
the notation:

∆r = {z ∈ C : |z| < r},
S = {f ∈ A : f is univalent in ∆},

AR = {f ∈ A : f has real coefficients}.
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Theorem 1. For a fixed class A ⊂ A, the following properties of KA(D)
are true:

1. if A satisfies (1) and A ⊂ S, then KA(∆r) = ∆m(r), where m(r) =
min{|f(z)| : f ∈ A, z ∈ ∂∆r};

2. if A ⊂ AR and D is symmetric with respect to the real axis, then
KA(D) is symmetric with respect to the real axis;

3. if A ⊂ AR consists of only such f that −f(−z) ∈ A, and if D is
symmetric with respect to both axes, then KA(D) is symmetric with
respect to both axes;

4. if D1 ⊂ D2, then KA(D1) ⊂ KA(D2);
5. if A1, A2 ⊂ A and A1 ⊂ A2, then KA2(D) ⊂ KA1(D).

Theorem 2. For a fixed class A ⊂ A, the following properties of LA(D)
are true:

1. if A satisfies (1) and A ⊂ S, then LA(∆r) = ∆M(r), where M(r) =
max{|f(z)| : f ∈ A, z ∈ ∂∆r};

2. if A ⊂ AR and D is symmetric with respect to the real axis, then
LA(D) is symmetric with respect to the real axis;

3. if A ⊂ AR consists of only such f that −f(−z) ∈ A, and if D is
symmetric with respect to both axes, then LA(D) is symmetric with
respect to both axes;

4. if D1 ⊂ D2, then LA(D1) ⊂ LA(D2);
5. if A1, A2 ⊂ A and A1 ⊂ A2, then LA1(D) ⊂ LA2(D).

In accordance with simple results concerning the known classes S, ST ,
CV and CC consisting of normalized univalent, starlike, convex and close-
to-convex functions respectively, we have

KS(∆r) = KST (∆r) = KCC(∆r) = ∆m(r),

where m(r) = r
(1+r)2

, r ∈ (0, 1],

KCV (∆r) = ∆m(r),

where m(r) = r
1+r , r ∈ (0, 1],

LS(∆r) = LST (∆r) = LCC(∆r) = ∆M(r),

where M(r) = r
(1−r)2

, r ∈ (0, 1),

LCV (∆r) = ∆M(r),

where M(r) = r
1−r , r ∈ (0, 1),

LS(∆) = LST (∆) = LCC(∆) = LCV (∆) = C.
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In this paper we determine Koebe domains and covering domains for the
class T over some special sets, like disks ∆r and the lense-shaped domain
H = {z : |z + i| <

√
2} ∩ {z : |z − i| <

√
2}.

Covering domains LT (D). First of all, let us consider the case D = ∆r,
where r ∈ (0, 1). Since the class T does not satisfy (1), the set LT (∆r) is
not equal to ∆M(r), where M(r) = max{|f(z)| : f ∈ T, z ∈ ∂∆r} = r

(1−r)2
,

but is a proper subset of ∆M(r).
Denote

(2) ft(z) =
z

1− 2zt + z2
, t ∈ [−1, 1].

These functions are univalent, starlike in the unit disk and

(3) ET = {ft(z) : t ∈ [−1, 1]},
where ET means the set of extreme points of the class T (see for example
[5]). The following lemma is true for the functions of the form (2).

Lemma 1. For t ∈ [0, 1] we have f−t(∆r)∩{w : Re w > 0} ⊂ ft(∆r)∩{w :
Re w > 0}.
Proof. The above inclusion is true for t = 0. Let t ∈ (0, 1]. If 1/ft(z) =
1/f−t(ζ) = u + iv and |z| = |ζ| = r then(

u + 2t

r + 1/r

)2

+
(

v

1/r − r

)2

= 1 =
(

u− 2t

r + 1/r

)2

+
(

v

1/r − r

)2

,

i.e. u = 0, v2 = [(1 + r2)2 − 4t2r2](1 − r2)2/(r + r3)2, z = 2tr2

1+r2 − i vr2

1−r2 ,
ζ = −z. Thus

ft(∂∆r) ∩ f−t(∂∆r) = {i%,−i%} ,

where
% = 1/|v| = (r + r3)/[(1− r2)

√
(1 + r2)2 − 4t2r2].

The inequality ft(r) > f−t(r) completes the proof. �

By the Robertson formula for the class T , the set {f(z) : f ∈ T} is the
closed convex hull of the circular arc {ft(z) : −1 ≤ t ≤ 1}, so we have [2]:
Theorem B (Goluzin). Let z = reiϕ ∈ ∆ \ {0}, 0 < ϕ < π and R =
r/[2(1 − r2) sinϕ. The set {f(z) : f ∈ T} is the closed convex segment
bounded by the arc {ft(z) : −1 ≤ t ≤ 1} and the line segment joining the
points f1(z), f−1(z). Clearly, {ft(z) : −1 ≤ t ≤ 1} ⊂ {w : |w − iR| = R}.
One can obtain from this theorem that the upper estimate of the set of
moduli of typically real functions in a fixed point z ∈ ∆ is attained by the
functions of the form (2). The lower estimation is attained by a suitable
function of the form

(4) f = αf1 + (1− α)f−1 , α ∈ [0, 1].

Let r be an arbitrary fixed number in (0, 1).
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Theorem 3. LT (∆r) = f1(∆r) ∪ f−1(∆r).

Proof. The property 3 from Theorem 2 gives that the covering domain
LT (∆r) is symmetric with respect to both coordinate axes. It suffices to
determine the boundary of this set only in the first quadrant of C plane.
To do this, we discuss

(5) max{|f(z)| : f ∈ T, |z| = r, arg f(z) = α} , α ∈ [0, π
2 ] .

According to Theorem B, we have

(6)
max{|f(z)| : f ∈ T, |z| = r, arg f(z) = α}

= max{|ft(z)| : t ∈ [−1, 1], |z| = r, arg ft(z) = α}.

Clearly, the maximum of the right hand side of (6) is obtained by some ft0

if and only if the minimum

(7) min
{

1
4 |ft(z)|−2 : t ∈ [−1, 1], |z| = r, arg ft(z) = α

}
is obtained also by ft0 .
According to Lemma 1 we discuss t ∈ [0, 1] only.
Denote by h(t, ϕ) the function we are minimizing, i.e.

h(t, ϕ) =
1
4
|ft(reiϕ)|−2 =

1
4

∣∣∣∣reiϕ +
1
r
e−iϕ − 2t

∣∣∣∣2 = t2−2at cos ϕ+a2−sin2 ϕ,

with a = 1
2(r + 1

r ) > 1.
Since the function ϕ 7→ Γ(ϕ) = sinϕ/(a cos ϕ − t) strictly increases on
intervals of the domain of Γ, the condition arg ft(reiϕ) = α can be written
as follows:

(8)

√
a2 − 1 sinϕ

a cos ϕ− t
= tan α for 0 < ϕ < arccos

(
t

a

)
and

(9) 0 = α for ϕ = 0 ,
π

2
= α for ϕ = arccos

(
t

a

)
≤ π

2
.

Let 0 < α < π
2 . We are going to prove that the minimum of h on the curve

(8) is attained outside of the set {(t, ϕ) : 0 < t < 1 , 0 < ϕ < arccos
(

t
a

)
}.

On the contrary, if there existed an (t0, ϕ0), 0 < t0 < 1 , 0 < ϕ0 <
arccos

(
t0
a

)
, which realizes the minimum (7), then there would be a Lagrange

function

H(t, ϕ) ≡ h(t, ϕ)− λ

[√
a2 − 1 sinϕ

a cos ϕ− t
− tanα

]
such that ∂H

∂t (t0, ϕ0) = ∂H
∂ϕ (t0, ϕ0) = 0 and

√
a2 − 1 sinϕ0/(a cos ϕ0 − t0) =

tanα. Reducing λ from the above system of equalities we get[
(t0 − a cos ϕ0)2 + (a2 − 1) sin2 ϕ0

]
cos ϕ0 = 0,
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a contradiction. Thus (7) is equal to

min
{

1
4
|ft(reiϕ)|−2 : t(1− t) = 0, 0 < ϕ < arccos

(
t

a

)
, arg ft(reiϕ) = α

}
.

But 0 < ϕ < π
2 ,

√
a2 − 1 sinϕ/a cos ϕ = tan α implies

sinϕ = a sinα/
√

a2 − cos2 α ∈ (0, 1) and
1
4
|f0(reiϕ)|−2 =

a2(a2 − 1)
a2 − cos2 α

.

Similarly, if 0 < ϕ < arccos
(

1
a

)
and

√
a2−1 sin ϕ
a cos ϕ−1 = tan α, then

cos ϕ =
1 + a cos α

a + cos α
∈
(

1
a
, 1
)

and
1
4
|f1(reiϕ)|−2 =

(
a2 − 1

a + cos α

)2

<
a2(a2 − 1)
a2 − cos2 α

.

Thus |f0(reiϕ0)| < |f1(reiϕ1)| for

0 < ϕ0 <
π

2
, 0 < ϕ1 < arccos

(
1
a

)
, arg f0(reiϕ0) = arg f1(reiϕ1) = α.

In particular,

max{|f(z)| : f ∈ T, |z| = r, arg f(z) = α}

=

∣∣∣∣∣f1

(
r(1 + a cos α + i

√
a2 − 1 sinα)

a + cos α

)∣∣∣∣∣ .
Finally, we should examine two cases: α = 0 and α = π

2 . For α = 0 we
have h(t, 0) = (a− t)2 ≥ h(1, 0). In the case α = π

2 we obtain

h(t, ϕ) = (a2 − 1)
(

1− t2

a2

)
≥ h(1, ϕ).

It means that for every function f ∈ T

f(∆r) ∩ {w : Re w ≥ 0} ⊂ f1(∆r) ∩ {w : Re w ≥ 0}.
From the equation f−t(−z) = −ft(z), which is true for the functions of the
form (2), we consequently have

f(∆r) ∩ {w : Re w ≤ 0} ⊂ f−1(∆r) ∩ {w : Re w ≤ 0}.
�

From Theorem 3 we conclude:

Corollary 1. For every function f ∈ T and z ∈ ∂∆r (i.e. |z| = r) we have
1. |f(z)| ≤ r

(1−r)2
,

2. |Re f(z)| ≤ r
(1−r)2

,



On covering problems in the class... 57

3. | Im f(z)| ≤
√

2[(1+r2)
√

1+34r2+r4−1+14r2−r4](
√

1+34r2+r4+1+r2)

8[(1+r2)
√

1+34r2+r4+1−14r2+r4]
.

Observe that Theorem 3 still holds for r = 1.
As it was said, the set LT (∆) is the whole complex plane C. It is easy to
see that ∆ could be replaced by another set for which the covering domain
is still the whole plane.
Let us consider the lens-shaped domainH. For z ∈ ∂H we have |z+ 1

z | = 2
and hence z + 1

z = 2eiϕ, ϕ ∈ (−π, π]. Therefore, the boundary of the image
of H under the function f1 is a straight line Re w = −1

4 because f1(z) =
1

2(eiϕ−1)
= −1

4(1 + i cot ϕ
2 ). It implies that f1(H) = {w ∈ C : Re w > −1

4}.
Likewise, it could be shown that f−1(H) = {w ∈ C : Re w < 1

4}. We have
proved:

Theorem 4. LT (H) = C.

The plain question appears: are there other sets D ⊂ H, D 6= H such
that LT (D) = C or, is there the smallest set D0 having this property (in
the sense that LT (D0) = C and whose every proper subset D satisfies
LT (D) 6= C)?
Let us denote by Ea the subset of∆ such that z+ 1

z belongs to the exterior
of an ellipse u = 2 cos τ , v = 2a sin τ , where a ≥ 1 , τ ∈ (−π, π]. Hence

Ea =
{

z ∈ ∆ :
∣∣∣∣z +

1
z

+ 2i
√

a2 − 1
∣∣∣∣+ ∣∣∣∣z +

1
z
− 2i

√
a2 − 1

∣∣∣∣ > 4a

}
.

In special case E1 = H.
For z ∈ ∂Ea∩{z : Im z > 0} or equivalently z+ 1

z = 2(cos τ+ia sin τ) , τ ∈
(−π, 0) we have

f1(z) = − 1
4[1 + (a2 − 1) cos2 τ

2 ]

(
1 + ia cot

τ

2

)
and

f−1(z) =
1

4[1 + (a2 − 1) sin2 τ
2 ]

(
1− ia tan

τ

2

)
.

This yields that f1(Ea) ⊃ {w : Re w ≥ 0} and f−1(Ea) ⊃ {w : Re w ≤ 0},
and eventually f1(Ea) ∪ f−1(Ea) = C. This could be written in the form:

Theorem 5. For every a ≥ 1 we have LT (Ea) = C .

Observe that E∞ = lima→∞Ea is not a domain, and it consists of two
disjoined domains H1 and H−1 given by

(10)
H1 =

{
z ∈ ∆ : Re

(
z +

1
z

)
> 2
}
and

H−1 =
{

z ∈ ∆ : Re
(

z +
1
z

)
< −2

}
.
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These sets appear in the known property of typically real functions [2],
[6]:

(11)
∀f ∈ T |f−1(z)| ≤ |f(z)| ≤ |f1(z)| for z ∈ H1 and

∀f ∈ T |f1(z)| ≤ |f(z)| ≤ |f−1(z)| for z ∈ H−1.

The image of the curve ∂H1 under f1 coincides with the imaginary axis,
as well as the image of the curve ∂H−1 under f−1. Consequently, f1(H1) =
{w : Re w > 0} and f−1(H−1) = {w : Re w < 0}.
It is known that these two functions attain the upper and the lower
estimate of argument of typically real functions [2]. For this reason there is
no function f ∈ T for which

| arg f(z)| ≤ | arg f1(z)| = π

2
for z ∈ ∂H1 and

| arg f(z)| ≥ | arg f−1(z)| = π

2
for z ∈ ∂H−1.

This leads to the conclusion:

Theorem 6.

LT (H1 ∪H−1) = C \ {it : t ∈ R}, LT (cl(H1 ∪H−1)) = C,

where cl(A) stands for a closure of a set A.

This theorem provides that the set cl(H1∪H−1) is the smallest set having
the covering set equal to the whole plane (because there does not exist a set
D ⊂ cl(H1 ∪H−1), D 6= cl(H1 ∪H−1) such that LT (D) = C).
In the above presented results we have found a covering set over a given
set D ⊂ ∆. One can research these domains from another angle. Assume
that Ω is a covering domain over some domain D. Our aim is to find D.
This problem is easy to solve when Ω = ∆M . If LT (D) = ∆M , M > 0,
then every boundary point of ∆M is attained by some function of the form
(2). Certainly, both statements are equivalent: |ft(z)| < M, t ∈ [−1, 1] and
|z+ 1

z −2t| > 1
M , t ∈ [−1, 1], which we can rewrite as a system of conditions∣∣∣∣z +

1
z

+ 2
∣∣∣∣ > 1

M
for z ∈ ∆ , Re

(
z +

1
z

)
< −2 ,∣∣∣∣Im(z +

1
z

)∣∣∣∣ > 1
M
for z ∈ ∆ ,

∣∣∣∣Re
(

z +
1
z

)∣∣∣∣ ≤ 2 ,∣∣∣∣z +
1
z
− 2
∣∣∣∣ > 1

M
for z ∈ ∆ , Re

(
z +

1
z

)
> 2 .



On covering problems in the class... 59

Let us denote by DM , M > 0 the set{
z ∈ ∆ :

∣∣∣∣z +
1
z
− 2
∣∣∣∣ >

1
M

, Re
(

z +
1
z

)
> 2
}

∪
{

z ∈ ∆ :
∣∣∣∣z +

1
z

+ 2
∣∣∣∣ > 1

M
, Re

(
z +

1
z

)
< −2

}
∪
{

z ∈ ∆ :
∣∣∣∣Im(z +

1
z

)∣∣∣∣ > 1
M

,

∣∣∣∣Re
(

z +
1
z

)∣∣∣∣ ≤ 2
}

.

Using the introduced notation we have

DM =
{

z ∈ H1 : |z − 1|2 >
1
M
|z|
}
∪
{

z ∈ H−1 : |z + 1|2 >
1
M
|z|
}

∪
{

z ∈ ∆ \ (H1 ∪H−1) :
∣∣∣∣Im(z +

1
z

)∣∣∣∣ > 1
M

}
.

Then

Theorem 7. LT (DM ) = ∆M .

Koebe domainsKT (D). The minimum of modulus of typically real func-
tions for a fixed z ∈ ∆ is attained by the functions of the form (4), which
are not univalent (except for f1 and f−1). It means that calculating this
minimum in all directions eiα is not the same as finding the Koebe domain.
This is the reason why the determination of Koebe domains for the class T
is usually more difficult than the determination of covering domains. Ac-
cording to Goodman [3], the boundary of the Koebe domain over ∆ consists
of the images of points on the unit circle under infinite-valent functions that
are called the universal typically real functions.
We will avoid the problem of not univalent functions if we consider the
Koebe domain over the lens-shaped domain H and over disks ∆r with suf-
ficiently small radius (i.e. r ≤

√
2− 1).

Theorem 8. KT (H) = ∆ 1
4
.

Proof. Set Γ = ∂H \ {−1, 1}, Γ+ = {z ∈ Γ : Im z > 0}, Γ− = {z ∈
Γ : Im z < 0}. We shall find the envelope of the family of line segments
{αf1(z) + (1− α)f−1(z) : 0 < α < 1}, z ∈ Γ.
Let z ∈ Γ+ which is the same as z + 1

z = 2eiϕ, ϕ ∈ (−π, 0). The complex
parametric equation of each line segment connecting f1(z) and f−1(z) is as
follows

w(t) =
1

2(eiϕ − 1)
+ t

[
1

2(eiϕ + 1)
− 1

2(eiϕ − 1)

]
, t ∈ [0, 1] , ϕ ∈ (−π, 0) ,
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and the real parametric equation is of the form
x(t) = −1

4
+

1
2
t

y(t) = −1
4

cot
ϕ

2
+

1
2
t cot ϕ , t ∈ [0, 1] , ϕ ∈ (−π, 0).

Hence, we have one parameter family of segments given by y = −1
4 cot ϕ

2 +
(x + 1

4) cot ϕ, where x ∈ [−1
4 , 1

4 ].
Reducing ϕ from the system

y = −1
4

cot
ϕ

2
+
(

x +
1
4

)
cot ϕ

0 =
1
8

1
sin2 ϕ

2

−
(

x +
1
4

)
1

sin2 ϕ
,

we obtain the envelope of this family satisfying the equation x2 + y2 = 1
16 .

Since x ∈ [−1
4 , 1

4 ], we conclude that ∂∆ 1
4
∩{w : Im w > 0} is the investigated

envelope. Clearly, the envelope of this family for z ∈ Γ− is ∂∆ 1
4
∩ {w :

Im w < 0}.
From the above and from Theorem B it follows that for a fixed z ∈ Γ:

{f(z) : f ∈ T} ∩∆ 1
4

= ∅ ⇒ ∀f∈T f(Γ) ∩∆ 1
4

= ∅

⇒ ∀f∈T ∆ 1
4
⊂ f(H) ⇒ ∆ 1

4
⊂ KT (H).

All typically real functions are univalent in H, see [3], hence for any f ∈ T
we have f(Γ) ⊂ ∂f(H). It means that for an arbitrary point w, |w| = 1

4 ,
there exists the only one function f ∈ T such that w ∈ ∂f(H). It is that
function of the form (4) for which the segment [f−1(z), f1(z)] is tangent to
the derived envelope for all z ∈ Γ. Hence KT (H) ⊂ ∆ 1

4
. �

Remark. The relation KT (H) ⊂ ∆ 1
4
can be proved in another way. One

can check that

∂∆ 1
4
∩ {w : Im w ≥ 0} = {αf1(zα) + (1− α)f−1(zα) : α ∈ [0, 1]},

where zα is the only solution of αf ′1(z) + (1 − α)f ′−1(z) = 0 in the set
∆ ∩ {z : Im z ≥ 0}.

From the property 4 of Theorem 1 it follows that the set KT (H) = ∆ 1
4

is contained in KT (∆). Theorem 8 states that KT (H) 6= KT (∆). Both
domains have only two common boundary points z = 1 and z = −1. Let us
recall the known result of Brannan and Kirwan [1]:

Theorem C (Brannan, Kirwan). If f ∈ T , then ∆ 1
4
⊂ f(∆).

We can improve this result as follows.
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Theorem 9. If f ∈ T , then ∆ 1
4
⊂ f(H).

Moreover, we can establish more general version of Theorem 8 concerning
sets Ea, a > 1.

Theorem 10. For any a ≥ 1 the set KT (Ea) is the convex domain having
the boundary curve of the form 16x2 + 4(1+a2)2

a2 y2 = 1.

Proof. Let z ∈ ∂Ea ∩ {z : Im z > 0}. Then z + 1
z = 2(cos τ + ia sin τ),

τ ∈ (−π, 0). The line segment connecting f1(z) and f−1(z) is given by the
complex parametric equation

w(t) =
−1

2 sin τ(tan τ
2 − ai)

+ t
1

sin2 τ(cot τ
2 + ai)(tan τ

2 − ai)
, t ∈ [0, 1] ,

or by the real parametric equation x(t) = − 1
4[1+(a2−1) cos2 τ

2
]
+ t 1+a2

4[1+(a2−1) sin2 τ
2
][1+(a2−1) cos2 τ

2
]

y(t) = − −a
4 tan τ

2
[1+(a2−1) cos2 τ

2
]
+ t

2a cot τ
2

4[1+(a2−1) sin2 τ
2
][1+(a2−1) cos2 τ

2
]
.

After simple calculation we can write the equation of one parameter fam-
ily of line segments

2ax cos τ − (1 + a2)y sin τ − a

2
= 0.

From the system  2ax cos τ − (1 + a2)y sin τ − a

2
= 0

− 2ax sin τ − (1 + a2)y cos τ = 0

one can obtain the equation of envelope

(12) 16x2 +
4(1 + a2)2

a2
y2 = 1 .

Since t ∈ [0, 1] is equivalent to x ∈ [−1
4 , 1

4 ], we conclude that whole curve
(12) is the envelope of the considered family of line segments.
From the convexity of the set 16x2 + 4(1+a2)2

a2 y2 < 1, from univalence
of all typically real functions in each Ea , a ≥ 1 (because Ea ⊂ H) and
the argument similar to that given in the proof of Theorem 8 we obtain
KT (Ea) =

{
(x, y) : 16x2 + 4(1+a2)2

a2 y2 < 1
}
. �

Corollary 2. KT (E∞) = ∅.

The above presented method of determining an envelope is also suitable
for a ∈ (0, 1). In this case, sets Ea contain H, the domain of univalence
and local univalence for the class T . Therefore, envelopes obtained in this
way do not coincide with the boundary curves of the Koebe domains over
Ea , a ∈ (0, 1). From the equation (12) we know that the sets bounded by
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these envelopes, which can be written as LT (Ea)\LT (∂Ea), are contained in
∆ 1

4
. It means that the presented method of envelopes fails for determining

the sets Ea , 0 < a < 1.
Finally, let us consider the Koebe domains over ∆r, r ∈ (0,

√
2− 1]. The

method of an envelope is still good for deriving KT (∆r). Similarly to the
argument given above, this method works for any r ∈ (0, 1), but an envelope
obtained in this way would be the boundary of the Koebe domain only for
such a disk, in which all typically real functions (among other functions (4),
too) are univalent. It holds only for r ≤

√
2− 1.

For a fixed r ∈ (0, 1] we use the notation

w−1(ϕ) = f−1(reiϕ) , w1(ϕ) = f1(reiϕ) ,

v(ϕ) =

[
cos ϕ

2(r + 1
r )

+
(1

r − r)2 sin2 ϕ cos ϕ

(r + 1
r )(r2 + 1

r2 − 2 cos 2ϕ)

]
+ i

(1
r − r) sin3 ϕ

r2 + 1
r2 − 2 cos 2ϕ

and

(13) w(ϕ) =

{
w−1(ϕ) , ϕ ∈ [0, ϕ0(r)] ,

v(ϕ) , ϕ ∈ (ϕ0(r), π
2 ] ,

where ϕ0(r) = arccos 1
4 [
√

(r + 1
r )2 + 32− (r + 1

r )].
From now on we make the assumption:

arg w−1(0) = 0 , arg v(0) = 0 , arg w1(0) = 0 ,

arg [w1(0)− w−1(0)] = 0 , arg w′−1(0) = π
2 .

Theorem 11. The domain KT (∆r) for r ∈ (0,
√

2 − 1] is symmetric with
respect to both axes with w = 0 belonging to it. Its boundary in the first
quadrant of the complex plane is the curve of the form w([0, π

2 ]).

The proof is based on the following four lemmas.

Lemma 2. The function arg w′−1(ϕ)

1. is increasing in [0, π] for r ∈ (0, 2−
√

3],
2. is decreasing in [0, ϕ1(r)] and is increasing in [ϕ1(r), π] for r ∈ (2−√

3, 1],

where ϕ1(r) = arccos 1+r2

4r .

Proof. Let h(ϕ) =
(
arg w′−1(ϕ)

)′. We have
h(ϕ) = Re

(
1 + reiϕ f ′′−1(re

iϕ)
f ′−1(reiϕ)

)
= Re

1− 4reiϕ + r2e2iϕ

1− r2e2iϕ

=
1

|1− r2e2iϕ|2
(1− r2)(1− 4r cos ϕ + r2) .
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For r ∈ (0, 2−
√

3] the function h is positive for all ϕ ∈ [0, π], and for r ∈ (2−√
3, 1] the function h is negative in [0, ϕ1(r)) and positive in (ϕ1(r), π]. �

Lemma 3. For ϕ ∈ [0, ϕ0(r)) we have

arg w′−1(ϕ)− arg [w1(ϕ)− w−1(ϕ)] > 0 .

Proof. Let h(ϕ) = arg w′−1(ϕ)− arg [w1(ϕ)− w−1(ϕ)]. Then

h(ϕ) = arg
[

1− z

(1 + z)3
iz

]
− arg

[
z

(1− z)2
− z

(1 + z)2

]
= arg

1− z

1 + z
− arg

z

(1− z)2
+

π

2

=
π

2
−
[
arctan

2r sin ϕ

1− r2
+ arctan

(1− r2) sinϕ

(1 + r2) cos ϕ− 2r2

]
.

From the equation h(ϕ) = 0 it follows that 2 cos2 ϕ + (r + 1
r ) cos ϕ− 4 = 0.

Therefore, ϕ = ϕ0(r) is the only solution of h(ϕ) = 0 in [0, π
2 ]. Since

h(0) > 0, so h(ϕ) > 0 for ϕ ∈ [0, ϕ0(r)). �

Lemma 4. The envelope of the family of line segments [w−1(ϕ), w1(ϕ)],
where ϕ ∈ (0, π), coincides with v([ϕ0(r), π − ϕ0(r)]).

Proof. We begin with calculating the envelope of the family of straight
lines containing these segments. We have an equation of these lines:

x

(
1
r2
− r2

)
sin 2ϕ + y

[
2−

(
1
r2

+ r2

)
cos 2ϕ

]
=
(

1
r
− r

)
sinϕ .

From
x

(
1
r2
− r2

)
sin 2ϕ + y

[
2−

(
1
r2

+ r2

)
cos 2ϕ

]
−
(

1
r
− r

)
sinϕ = 0

2x

(
1
r2
− r2

)
cos 2ϕ + 2y

(
1
r2

+ r2

)
sin 2ϕ−

(
1
r
− r

)
cos ϕ = 0 .

we obtain the envelope which can be written in the form w = v(ϕ) , ϕ ∈
(0, π), where v is defined by (12). This curve is regular because (Re v′(ϕ))2+
(Im v′(ϕ))2 6= 0, which can be concluded from the fact that the system{

Re v′(ϕ) = 0
Im v′(ϕ) = 0

has no solution for ϕ ∈ (0, π).
Moreover, observe

arg [w1(ϕ)− w−1(ϕ)] = 2 arg
reiϕ

1− r2e2iϕ
,

hence starlikeness of the function z → z
1−z2 implies that the argument of

the tangent vector to the curve v ((0, π)) is increasing.
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The envelope of the family of line segments is constructed of these points
of v ((0, π)) for which

arg w−1(ϕ) ≤ arg v(ϕ) ≤ arg w1(ϕ)

or equivalently

Im w−1(ϕ) ≤ Im v(ϕ) ≤ Im w1(ϕ) for ϕ ∈ (0, π
2 ]

and
Im w−1(ϕ) ≥ Im v(ϕ) ≥ Im w1(ϕ) for ϕ ∈ [π

2 , π) .

For ϕ ∈ (0, π) we have

1
r + 1

r + 2| cos ϕ|
≤ sin2 ϕ

r + 1
r − 2| cos ϕ|

,

and hence

2 cos2 ϕ +
(

r +
1
r

)
cos ϕ− 4 ≤ 0 ,

and finally
ϕ ∈ [ϕ0(r), π − ϕ0(r)] .

We have proved that the envelope of the family of line segments
[w−1(ϕ), w1(ϕ)] and the curve v([ϕ0(r), π − ϕ0(r)]) are the same. �

Let Aϕ , ϕ ∈ (0, π
2 ] be the sector given by

Aϕ = {u ∈ C : arg w−1(ϕ) ≤ arg [u− w−1(ϕ)] ≤ arg [w1(ϕ)− w−1(ϕ)]}
and let

l1 = {u ∈ C : arg u = arg w−1(ϕ)} ,

l2 = {u ∈ C : arg u = arg [w1(ϕ)− w−1(ϕ)]} .

Denote by E the domain which is bounded, symmetric with respect to both
axes and whose boundary in the first quadrant of the complex plane is
identical with w([0, π

2 ]).

Lemma 5. For ϕ ∈ [0, π
2 ] we have

1. E ∩Aϕ = ∅,
2. cl(E) ∩Aϕ is a one-point set.

Proof. Observe that from Lemma 2 the curve w([0, π
2 ]) has only one in-

flexion point w(ϕ1) when r ∈ (2 −
√

3, (
√

24 −
√

15)/3) and w(ϕ0) if r ∈
((
√

24−
√

15)/3,
√

2− 1].
Let us discuss the case r ∈ (2−

√
3, (
√

24−
√

15)/3). Let ϕ ∈ (0, ϕ1(r)].
From Lemma 2, Lemma 3 and monotonicity of arg [w1(ϕ)− w−1(ϕ)] we
conclude

Aϕ ⊂ {u ∈ C : arg w−1(ϕ) ≤ arg [u− w−1(ϕ)] ≤ arg [w1(ϕ1)− w−1(ϕ1)]}
⊂ {u ∈ C : arg w−1(ϕ) ≤ arg [u− w−1(ϕ)] ≤ arg w′−1(ϕ1)} .
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It means that Aϕ ∩ f−1(∆r) = ∅ and hence Aϕ ∩E = ∅, since E ⊂ f−1(∆r).
Let ϕ ∈ (ϕ1(r), ϕ0(r)]. From Lemma 2 and Lemma 3 we have

Aϕ ⊂ {u ∈ C : arg w−1(ϕ) ≤ arg [u− w−1(ϕ)] ≤ arg w′−1(ϕ)} .

It means that Aϕ ∩ f−1(∆r) = ∅ and hence Aϕ ∩E = ∅, since E ⊂ f−1(∆r).
Furthermore, cl(E) ∩Aϕ = w−1(ϕ) for ϕ ∈ (0, ϕ0].
Let ϕ ∈ (ϕ0,

π
2 ]. Then l2 is tangent to w((ϕ0,

π
2 )). From starlikeness of

f−1 and the definition of E it follows that w−1(ϕ) /∈ E and consequently
Aϕ ∩ E = ∅. The sets cl(E) and Aϕ have only one common point, i.e. the
tangential point.
In the case r ∈ (0, 2 −

√
3) and r ∈ (

√
24 −

√
15)/3,

√
2 − 1] lemma can

be proved slightly more easily, proceeding analogously to the case proven
above, dividing the segment [0, π

2 ] into two [0, ϕ0(r)] and (ϕ0(r), π
2 ]. �

Proof of Theorem 11. Let r ∈ (0,
√

2−1]. From Lemma 5 it follows that
E ⊂ KT (∆r). The definition of the Koebe domain leads to

KT (∆r) ⊂
⋂

α∈[0,1]

(αf1 + (1− α)f−1) (∆r) = E .

Hence KT (∆r) = E. �
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