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On convexity of the space of random elements

Abstract. In the space of random elements taking values in a metric space
convex in the sense of Doss we may define expected value (see [2]). In this
paper we show that the space of random elements with a proper metric is also
convex in the sense of Doss if the space of values is convex in the sense of
Doss.

Let (Ω,A, P ) be a probability space. By (S, %) we denote a metric space
and ζ stands for the σ-field generated by the open sets of S. Throughout
this note S is assumed to be a nondegenerate, separable and complete space.
A mapping X : Ω → S such that X−1(ζ) ⊂ A, is called a random element
(r.e.). The set of all r.e. is denoted by XS . On this set we may introduce
the following well-known metrics:
Ky Fan metric

r(X, Y ) = inf{ε > 0 : P (%(X, Y ) > ε) < ε}

and

r1(X, Y ) = E
%(X, Y )

1 + %(X, Y )
.

The convergence in both metrics is equivalent to each other and to the
convergence in probability [1].
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In the literature there are many different definitions of convexity in metric
spaces namely:
Convexity in the sense of Menger

∀x1,x2∈S ∃t∈S, t6=x1,x2 %(x1, t) + %(t, x2) = %(x1, x2).

Convexity

∀x1,x2∈S ∀p∈[0,1] ∃t∈S %(x1, t) = p%(x1, x2), %(t, x2) = (1− p)%(x1, x2).

Strict convexity

∀x1,x2∈S ∀p∈[0,1] ∃t∈S %(x1, t) = p%(x1, x2), %(t, x2) = (1− p)%(x1, x2)

and element t is uniquely determined.
Convexity in the sense of Doss

(1) ∀x1,x2∈S ∃t∈S ∀z∈S %(z, t) ≤ 1
2

(%(x1, z) + %(x2, z)) .

W. Zięba in [4] shown that if a separable, complete metric space (S, %) is
convex then X with the Ky Fan metric is convex, and also a set of proba-
bilistic measures P(S) with the Levy–Prokhorov metric is a convex metric
space. It is quite obvious that if a metric space is separable and complete
then convexity in the sense of Menger is equivalent to the convexity. The
following examples show that if a metric space (S, %) has any of other listed
geometrical properties then the space of random elements with a given met-
ric equivalent to convergence in probability may not share this property.

Example 1. Let S = R with | · | metric. Let us check convexity in the sense
of Doss. Let P (X1 = −1) = 1 and P (X2 = 1) = 1. Then r(X1, X2) = 1.
We will show that there is no such random element T that

(2) ∀Z∈XS
r(Z, T ) ≤ 1

2
(r(X1, Z) + r(X2, Z)) .

Suppose that such an element exists. Taking in (2) Z = X1 and Z = X2 we
get respectively

r(X1, T ) ≤ 1
2
r(X1, X2) =

1
2
, r(X2, T ) ≤ 1

2
r(X1, X2) =

1
2
.

Since r(·, ·) is a metric we have

r(X1, T ) = r(X2, T ) =
1
2
.

According to the definition of the Ky Fan metric it implies that

P

(
T ∈

[
−3

2
,−1

2

])
≥ 1

2
, P

(
T ∈

[
1
2
,
3
2

])
≥ 1

2
.
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Now we define T (ω) ∈
[
−3

2 ,−1
2

]
for ω ∈ A and T (ω) ∈

[
1
2 , 3

2

]
for ω ∈ A′,

where P (A) = P (A′) = 1
2 . We take

(3) Z(ω) =

{
1, ω ∈ A;
−1, ω ∈ A′.

Then, we have r(Z,X1) = r(Z,X2) = 1
2 and r(Z, T ) = 1 which contradicts

(2).

Remark 1. This example also shows that strict convexity also is not nec-
essarily shared with spaces of random elements or probability measures. In
fact it is easy to see that T and Z are two different “midpoints” of “segment”
(X1, X2).

Remark 2. Note that the Ky Fan metric takes value 1 always when values
of random elements X, Y satisfy the condition

(4) % (X(ω), Y (ω)) ≥ 1 a.s.

In the view of the last remark the following questions appear:
Maybe the Ky Fan metric is “wrong”, maybe in other metric we can get
the property we need? Maybe if the space (S, %) has diameter less or equal
to 1 (∀(x, y ∈ S) %(x, y) ≤ 1) we can obtain property we need?
The partial answer to these questions is given by the following.

Example 2. Let S = [0, 1] with | · | metric. Let P (X1 = 0) = 1, P (X2 = 1)
= 1. Then r1(X1, X2) = 1

2 . Suppose that such element exists. Using
analogous procedure we have r1(X1, T ) = r1(X2, T ) = 1

4 so, since we have
strict inequality x

1+x < x for x ∈ (0, 1]

P (T = 0) =
1
2
, P (T = 1) =

1
2

(here, this is a uniquely (in distribution) determined midpoint of the seg-
ment (X1, X2)). Now suppose that T (ω) = 0 for ω ∈ A and T (ω) = 1 for
ω ∈ A′ where P (A) = 1

2 . Set

(5) Z(ω) =

{
1, ω ∈ A;
0, ω ∈ A′;

now we have

r1(Z,X1) = r1(Z,X2) =
1
4
, r1(Z, T ) =

1
2

which contradicts (2).

Now there is the following question:
Is there a metric d on X convergence in which would be equivalent to the
convergence in probability and such that (X , d) would be convex in the sense
of Doss?
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In some cases we may find such metric.

Theorem 1. Let (S, %) be a separable, complete metric space satisfying
condition (1) and such that

(6) ∃M∈R sup
x,y∈S

%(x, y) < M.

Then (XS , d), where d(X, Y ) = E%(X, Y ), satisfies (2) and convergence in
probability is equivalent to the convergence in metric.

To prove this theorem we will need the following lemma.

Lemma 1. Let X1, X2 be r.e. defined on (Ω,A, P ) with values in the sepa-
rable, complete metric space (S, %). If (S, %) satisfies (1) then there exists a
r.e. T such that

∀z∈S ∀ω∈Ω % (z, T (ω)) ≤ 1
2

[% (z,X1(ω)) + % (z,X2(ω))] .

Proof of Lemma 1. We choose a sequence of Borel subsets Si1,i2,...,ik sat-
isfying the following conditions [3]:

(1) Si1,i2,...,ik ∩ Si′1,i′2,...,i′k
= ∅ if is 6= i′s for some 1 ≤ s ≤ k,

(2)
∞⋃

ik=1
Si1,i2,...,ik−1,ik = Si1,i2,...,ik−1

,
∞⋃

i1=1
Si1 = S,

(3) sup
x,y∈Si1,i2,...,ik

%(x, y) ≤ 1
2k .

Let W = {w1, w2, . . .} be a dense subset in S. Define

Ai1,i2,...,ik =
∞⋂

j=1

{
ω : inf

x∈Si1,i2,...,ik

% (wj , x) ≤ 1
2

[% (wj , X1(ω)) + % (wj , X2(ω))]
}

and

A′i1,i2,...,ik
= A′i1,i2,...,ik−1

∩

(
Ai1,i2,...,ik \

ik−1⋃
l=1

Ai1,i2,...,ik−1,il

)
,

where A′i1 = Ai1 \
i1−1⋃
l=1

Al. Then

A′i1,i2,...,ik
∈ A, A′i1,i2,...,ik

∩A′i′1,i′2,...,i′k
= ∅ if is 6= i′s for some 1 ≤ s ≤ k,

and, by condition (1)
∞⋃

ik=1

A′i1,i2,...,ik
= A′i1,i2,...,ik−1

;
∞⋃

i1=1

A′i1 = Ω.

Now choose ti1,i2,...,ik ∈ Si1,i2,...,ik and define

Tk(ω) = ti1,i2,...,ik for ω ∈ A′i1,i2,...,ik
.
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For all ω ∈ Ω the sequence {Tn(ω), n ≥ 1} satisfies the Cauchy condition
and therefore converges to some T (ω) ∈ S. By definition we have

∀wj∈W ∀ω∈Ω % (wj , Tn(ω)) ≤ 1
2

[% (wj , X1(ω)) + % (wj , X2(ω))] +
1
2n

.

Using the fact that W is a dense set in S and taking the limit completes
the proof. �

Proof of Theorem 1. It is easy to check that d(·, ·) is a metric. We will
show that convergence in this metric is equivalent to the convergence in
probability.
Note that for all ε > 0

d(Xn, X) = E%(Xn, X)

=
∫

%(Xn,X)>ε
%(Xn, X)dP (ω) +

∫
%(Xn,X)≤ε

%(Xn, X)dP (ω).

So we always have

(7)
εP (%(Xn, X) > ε) ≤ d(Xn, X)

≤ εP (%(Xn, X) ≤ ε) + MP (%(Xn, X) > ε).

Now suppose that d(Xn, X) → 0. Using the first inequality from (7) for all
ε > 0 we obtain

P (%(Xn, X) > ε) ≤ d(Xn, X)
ε

→ 0,

so Xn
P−−−→

n→∞
X.

Suppose that Xn
P−−−→

n→∞
X and choose any ε > 0. Using the second

inequality from (7) we have

d(Xn, X) ≤ ε + MP (%(Xn, X) > ε) −−−→
n→∞

ε

because ε was chosen arbitrarily we have d(Xn, X) → 0.
Now it is enough to show that (X , d) satisfies (2). Using Lemma 1 we
have

∀X1,X2∈X ∃T∈X ∀z∈S ∀ω∈[0,1] % (z, T (ω)) ≤ 1
2

[% (z,X1(ω)) + % (z, X2(ω))] .

For each Z ∈ X we can construct the sequence of simple r.e. convergent to
Z. And taking expectation for both sides of inequality (respectively to ω)
we obtain

∀X1,X2∈X ∃T∈X ∀Z∈X d (Z, T ) ≤ 1
2

[d (Z,X1) + % (Z,X2)] . �

Note that if the space of values (S, %) does not satisfy condition (6) we
may introduce the equivalent metric %1(x, y) = %(x,y)

1+%(x,y) . The metric space
(S, %1) satisfies condition (6) and we have the following:
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Corollary 1. Let (S, %) be a separable, complete metric space, satisfying
the following condition: for all x1, x2 ∈ S there exists t ∈ S such that for
all z ∈ S

[% (x1, z)− % (t, z)] [1 + % (x2, z)] + [% (x2, z)− % (t, z)] [1 + % (x1, z)] ≥ 0.

Then (XS , d), where d(X, Y ) = E %(X,Y )
1+%(X,Y ) satisfies (2) and convergence in

probability is equivalent to the convergence in metric.
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