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Almost symplectic structures
on the linear frame bundle from linear connection

ABSTRACT. We describe all M f,,-natural operators S: Q ~» Symp P' trans-
forming classical linear connections V on m-dimensional manifolds M into
almost symplectic structures S(V) on the linear frame bundle P*M over M.

Let V be a real vector space of even dimension. A bilinear form w: V x
V' — R is called a symplectic form if it is antisymmetric and nondegenerate,
i.e. it satisfies

w(v,v) =0 for all v € V and if w(v,u) =0 for all v € V, then u = 0.

A vector space V is a symplectic vector space if it is equipped with
a symplectic form, [1].

Let M f,;, denote the category of m-dimensional manifolds and their em-
beddings and F M denote the category of fibred manifolds and fibred maps
between them.

For any m-dimensional manifold M we have the linear frame bundle
P'M = invJ3(R™, M) of the manifold M. This is a principal bundle with
corresponding Lie group GL(m) = G}, = invJ}(R™,R™)g, which acts on
P'M on the right via compositions of jets. Every map ¢: M; — My from
the category Mf,, induces a map Ply: PM; — P'Ms by Ply(jle) =
Jo( o @), where p: R™ — M is a map from the category Mf,,. The
correspondence P': M f,, — FM is a bundle functor in the sense of [3].
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For any 2n-dimensional manifold /N we have an almost symplectic struc-
tures bundle Symp (N) = U,y Symp (IyN) over the manifold N, where

Symp (TyN) denotes the set of symplectic forms w: T,N x TyN — R
on the tangent space T,N. The bundle Symp(N) is a subbundle (but
not vector subbundle) of a vector bundle T*N ® T*N of tensors of type
(0,2) over N. Sections Q: N — Symp (N) are called almost symplec-
tic structures on the manifold N. Every embedding ¢: Ni — Ny in-
duces a fibred map Symp (¢): Symp (N1) — Symp (N3) being restriction
of T*p @ T*: T*N1 @ T*Ny — T*Na ® T*Nsy to Symp (N). The corre-
spondence Symp: M fa,, — FM is a bundle functor in the sense of [3].

Let M be an m-dimensional manifold. We have the classical linear con-
nection bundle QM = (idp«y ®@ 1)~ (idry) € T*M @ JYTM of the
manifold M, where 7t: JITM — TM is the projection of the first jet pro-
longation J'TM = {jLX: X € X(M),z € M} of the tangent bundle T'M of
the manifold M. Sections V: M — QM correspond bijectively to classical
linear connections on M. Every embedding f: M; — M> induces a fibred
map Qf: QM; — QMs covering f. The correspondence Q: Mf,, - FM
is a bundle functor in the sense of [3].

Let {AI"}, i,j =1,...,m be the standard basis in gl(m) = Lie(GL(m)).

For a principal fibre bundle P'!M the action of group GL(m) on P'M
induces a homomorphism o of Lie algebra gl(m) of group GL(m) into Lie
algebra X(P'M) of vector fields on P'M. For every A € gl(m), a vector
field A* = o(A) is called the fundamental vector field corresponding to
A. Since the action of group GL(m) on P'M sends each fibre into itself,
therefore A* is tangent to the fibre at each u € P*M, [2].

Let V be a classical linear connection on m-dimensional manifold M.
For every £ € R™ we define the standard horizontal vector field B(&) on
PIM as follows. For each u € P'M, u: R™ — T,y M, a vector (B(§))y
is the unique horizontal vector at u such that T'n((B(£))s) = u(§), where
7 P'M — M, [2].

The canonical form 6 of bundle P! M is R™-valued 1-form on P' M defined
by

0(X)=u (Tr(X)) for X € T,(P'M),

where m: PLM — M and u: R™ — Ty, (M), [2].

For a given connection V on P'M we define a 1-form w on P'M with
values in Lie algebra gl(m) of group GL(m) as follows. For each X €
T.(P'M) we define w(X) to be the unique A € gl(m) such that (A*), is
equal to the vertical component of vector X. The form w is called the
connection form of the given connection V, [2].

Let By, ..., By, be the standard horizontal vector fields corresponding to
basic vectors ey, ..., ey, of space R™ and let {A7"} be fundamental vector

fields corresponding to basic vectors {A!} of Lie algebra gl(m). It is easy
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to verify that {B, Ag*} and {6°, w;} are dual to each other, i.e. they satisfy

k k k( Ad*
0% (B)) =o', 0°(A7) =0,
wi(B) =0, wr(A]") = drel,
where 6 are components of the canonical 1-form and wé are components of
the connection form.

Proposition 1 ([2]). The m?+m vector fields { By, A‘g*; i,j,k=1,...,m}
define an absolute parallelism in the bundle P'M.

The following definition of a natural operator is particular case of an idea
of natural operator which was considered in [3].

Definition 1. An M f,,-natural operator S: Q ~» Symp P! is a family of
M f,-invariant regular operators S = (Spy)

Sy QM) — Symp (P'M)

for any manifold M from the category M f,,, where Q(M) is the set of
all linear connections on the manifold M (sections of Q(M) — M) and
Symp (PYM) is the set of all almost symplectic structures on P*M (sections
of Symp (P'M) — P'M). The invariance means that if Vi € Q(M7) and
Vo € Q(Mz) are tp-related by «: My — My, that is Q(¢) o Vi = V301,
then S(V1) and S(V3) are Ply-related, that is Symp (Ply) o S(Vy) =
S(V3) o P9, The regularity means that smoothly parametrized families of
classical linear connections are transformed by S on smoothly parametrized
families of almost symplectic structures.

In the present note we will classify all natural operators S and obtained
result will be modification of result in [4].

Remark 1. In [4] there were described geometric constructions on higher
order frame bundles P"M. In the present paper we describe only case of
linear frame bundle P'M. The generalization of this problem for P"M is
not possible, because dimension of P"M for » > 1 does not have to be even.

For given connection V € Q(M) with respect to the global basis of vector
fields { By, Ag *} on P'M we have a canonical (in V) fibred diffeomorphism
Ky: P'M x Symp (R™ ™) = Symp (P'M)

covering idp1,; defined by the condition that the matrix of map Ky (u(z), @)
in the basis {By(V)(u(z)), A7"(u(z))} is the same as the one of the sym-
plectic form w in the canonical basis of space R +m,
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Let Z° = J§(Q(R™)), s = 0,1,...,00 be the set of s-jets j5V of all
classical linear connections V on R™ satisfying

m
Z V;k(:r)x]mk =0 fori=1,...,m,
jk=1

it means that the usual coordinates z!,..., 2™

center 0 € R™,

on R™ are V-normal with

Example 1. General construction: Let p: Z — Symp (Rm2+m) be a map
satisfying the following local finite determination property.

For any p € Z°° we can find an open neighborhood U C Z° of jet p,
a natural number s and a smooth map f: m,(U) — Symp (R™ ™) such
that u = f oms on U, where mg: Z°° — Z* is the jet projection. (A simple
example of such y is p = f o, for smooth f: Z5 — Symp (Rm2+m) and for
finite number s.)

Given a classical linear connection V on an m-dimensional manifold M
we define an almost symplectic structure S (V) on P*M as follows. Let
u(z) € (P*M),, x € M. Choose a V-normal coordinate system ¢ on M
with center z such that Ply(u(z)) = I° = ji(idgm). Such a coordinate
system 1) exists. Then germ,(¢) is uniquely determined. We put

SU (V) ugay = Symp (P (™) (K, v (1%, n(i5° (¥:V)))).

Since germ,(v) is uniquely determined, then above definition is correct.
The family S : Q ~» Symp P! is an M f,,-natural operator.

Theorem 1. Any M f,,-natural operator S: Q ~ Symp Pl is of the form
S<H=> for some uniquely determined (by S) function p: Z°° — Symp (Rm+m2)
satisfying local finite determination property.

Proof. Let S: Q ~» Symp P! be an M f,,-natural operator. Define p:2Z>°—
Symp (R™™) by

(1%, n(i5°V)) = K (S(V)(1%).

Then by non-linear Peetre theorem, [3], i satisfies local finite determination
property. Then by definitions of y and S<H> we have that S(V)(I") =
S<r>(V)(1%) for any classical linear connection V on R™ such that the
identity map idrm is a V-normal coordinate system with center 0 € R™.
Then by the invariance of S and S</~ with respect to normal coordinates
we deduce that S = S<+~. O

Remark 2. Symplectic geometry methods are key ingredients in the study
of dynamical systems, mathematical physics, analytical mechanics, differ-
ential geometry, [1], [5].
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