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Almost symplectic structures
on the linear frame bundle from linear connection

Abstract. We describe all Mfm-natural operators S : Q SympP 1 trans-
forming classical linear connections ∇ on m-dimensional manifolds M into
almost symplectic structures S(∇) on the linear frame bundle P 1M over M .

Let V be a real vector space of even dimension. A bilinear form $ : V ×
V → R is called a symplectic form if it is antisymmetric and nondegenerate,
i.e. it satisfies

$(v, v) = 0 for all v ∈ V and if $(v, u) = 0 for all v ∈ V , then u = 0.

A vector space V is a symplectic vector space if it is equipped with
a symplectic form, [1].

LetMfm denote the category of m-dimensional manifolds and their em-
beddings and FM denote the category of fibred manifolds and fibred maps
between them.

For any m-dimensional manifold M we have the linear frame bundle
P 1M = invJ1

0 (Rm,M) of the manifold M . This is a principal bundle with
corresponding Lie group GL(m) = G1

m = invJ1
0 (Rm,Rm)0, which acts on

P 1M on the right via compositions of jets. Every map ψ : M1 → M2 from
the category Mfm induces a map P 1ψ : P 1M1 → P 1M2 by P 1ψ(j10ϕ) =
j10(ψ ◦ ϕ), where ϕ : Rm → M1 is a map from the category Mfm. The
correspondence P 1 : Mfm → FM is a bundle functor in the sense of [3].
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For any 2n-dimensional manifold N we have an almost symplectic struc-
tures bundle Symp (N) =

⋃
y∈N Sỹmp (TyN) over the manifold N , where

Sỹmp (TyN) denotes the set of symplectic forms $ : TyN × TyN → R
on the tangent space TyN . The bundle Symp (N) is a subbundle (but
not vector subbundle) of a vector bundle T ∗N ⊗ T ∗N of tensors of type
(0, 2) over N . Sections Ω: N → Symp (N) are called almost symplec-
tic structures on the manifold N . Every embedding ψ : N1 → N2 in-
duces a fibred map Symp (ψ) : Symp (N1) → Symp (N2) being restriction
of T ∗ψ ⊗ T ∗ψ : T ∗N1 ⊗ T ∗N1 → T ∗N2 ⊗ T ∗N2 to Symp (N). The corre-
spondence Symp : Mf2n → FM is a bundle functor in the sense of [3].

Let M be an m-dimensional manifold. We have the classical linear con-
nection bundle QM := (idT ∗M ⊗ π1)−1(idTM ) ⊂ T ∗M ⊗ J1TM of the
manifold M , where π1 : J1TM → TM is the projection of the first jet pro-
longation J1TM = {j1xX : X ∈ X(M), x ∈M} of the tangent bundle TM of
the manifold M . Sections ∇̃ : M → QM correspond bijectively to classical
linear connections on M . Every embedding f : M1 → M2 induces a fibred
map Qf : QM1 → QM2 covering f . The correspondence Q : Mfm → FM
is a bundle functor in the sense of [3].

Let {Aj∗i }, i, j = 1, . . . ,m be the standard basis in gl(m) = Lie(GL(m)).
For a principal fibre bundle P 1M the action of group GL(m) on P 1M

induces a homomorphism σ of Lie algebra gl(m) of group GL(m) into Lie
algebra X(P 1M) of vector fields on P 1M . For every A ∈ gl(m), a vector
field A∗ = σ(A) is called the fundamental vector field corresponding to
A. Since the action of group GL(m) on P 1M sends each fibre into itself,
therefore A∗u is tangent to the fibre at each u ∈ P 1M , [2].

Let ∇ be a classical linear connection on m-dimensional manifold M .
For every ξ ∈ Rm we define the standard horizontal vector field B(ξ) on
P 1M as follows. For each u ∈ P 1M , u : Rm → Tπ(u)M , a vector (B(ξ))u
is the unique horizontal vector at u such that Tπ((B(ξ))u) = u(ξ), where
π : P 1M →M , [2].

The canonical form θ of bundle P 1M is Rm-valued 1-form on P 1M defined
by

θ(X) = u−1(Tπ(X)) for X ∈ Tu(P 1M),

where π : P 1M →M and u : Rm → Tπ(u)(M), [2].
For a given connection ∇ on P 1M we define a 1-form ω on P 1M with

values in Lie algebra gl(m) of group GL(m) as follows. For each X ∈
Tu(P 1M) we define ω(X) to be the unique A ∈ gl(m) such that (A∗)u is
equal to the vertical component of vector X. The form ω is called the
connection form of the given connection ∇, [2].

Let B1, . . . , Bm be the standard horizontal vector fields corresponding to
basic vectors e1, . . . , em of space Rm and let {Aj∗i } be fundamental vector
fields corresponding to basic vectors {Aji} of Lie algebra gl(m). It is easy
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to verify that {Bl, Aj∗i } and {θi, ωij} are dual to each other, i.e. they satisfy

θk(Bl) = δkl , θk(Aj∗i ) = 0,

ωkr (Bl) = 0, ωkr (Aj∗i ) = δki δ
j
r ,

where θi are components of the canonical 1-form and ωij are components of
the connection form.

Proposition 1 ([2]). The m2 +m vector fields {Bk, Aji
∗
; i, j, k = 1, . . . ,m}

define an absolute parallelism in the bundle P 1M .

The following definition of a natural operator is particular case of an idea
of natural operator which was considered in [3].

Definition 1. An Mfm-natural operator S : Q  SympP 1 is a family of
Mfm-invariant regular operators S = (SM )

SM : Q(M)→ Symp (P 1M)

for any manifold M from the category Mfm, where Q(M) is the set of
all linear connections on the manifold M (sections of Q(M) → M) and
Symp (P 1M) is the set of all almost symplectic structures on P 1M (sections
of Symp (P 1M) → P 1M). The invariance means that if ∇1 ∈ Q(M1) and
∇2 ∈ Q(M2) are ψ-related by ψ : M1 → M2, that is Q(ψ) ◦ ∇1 = ∇2 ◦ ψ,
then S(∇1) and S(∇2) are P 1ψ-related, that is Symp (P 1ψ) ◦ S(∇1) =
S(∇2) ◦P 1ψ. The regularity means that smoothly parametrized families of
classical linear connections are transformed by S on smoothly parametrized
families of almost symplectic structures.

In the present note we will classify all natural operators S and obtained
result will be modification of result in [4].

Remark 1. In [4] there were described geometric constructions on higher
order frame bundles P rM . In the present paper we describe only case of
linear frame bundle P 1M . The generalization of this problem for P rM is
not possible, because dimension of P rM for r > 1 does not have to be even.

For given connection ∇ ∈ Q(M) with respect to the global basis of vector

fields {Bk, Aj∗i } on P 1M we have a canonical (in ∇) fibred diffeomorphism

K∇ : P 1M × Sỹmp (Rm
2+m)→ Symp (P 1M)

covering idP 1M defined by the condition that the matrix of mapK∇(u(x), $)

in the basis {Bk(∇)(u(x)), Aj∗i (u(x))} is the same as the one of the sym-
plectic form $ in the canonical basis of space Rm2+m.
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Let Zs = Js0(Q(Rm)), s = 0, 1, . . . ,∞ be the set of s-jets js0∇ of all
classical linear connections ∇ on Rm satisfying

m∑
j,k=1

∇ijk(x)xjxk = 0 for i = 1, . . . ,m,

it means that the usual coordinates x1, . . . , xm on Rm are ∇-normal with
center 0 ∈ Rm.

Example 1. General construction: Let µ : Z∞ → Sỹmp (Rm2+m) be a map
satisfying the following local finite determination property.

For any ρ ∈ Z∞ we can find an open neighborhood U ⊂ Z∞ of jet ρ,
a natural number s and a smooth map f : πs(U) → Sỹmp (Rm2+m) such
that µ = f ◦ πs on U , where πs : Z∞ → Zs is the jet projection. (A simple
example of such µ is µ = f ◦πs for smooth f : Zs → Sỹmp (Rm2+m) and for
finite number s.)

Given a classical linear connection ∇ on an m-dimensional manifold M
we define an almost symplectic structure S〈µ〉(∇) on P 1M as follows. Let
u(x) ∈ (P 1M)x, x ∈ M . Choose a ∇-normal coordinate system ψ on M
with center x such that P 1ψ(u(x)) = l0 = j10(idRm). Such a coordinate
system ψ exists. Then germx(ψ) is uniquely determined. We put

S〈µ〉(∇)u(x) = Symp (P 1(ψ−1))(Kψ∗∇(l0, µ(j∞0 (ψ∗∇)))).

Since germx(ψ) is uniquely determined, then above definition is correct.
The family S〈µ〉 : Q SympP 1 is an Mfm-natural operator.

Theorem 1. Any Mfm-natural operator S : Q  SympP 1 is of the form
S<µ> for some uniquely determined (by S) function µ : Z∞→Sỹmp (Rm+m2

)
satisfying local finite determination property.

Proof. Let S : Q SympP 1 be anMfm-natural operator. Define µ :Z∞→
Sỹmp (Rm+m2

) by

(l0, µ(j∞0 ∇)) = K−1∇ (S(∇)(l0)).

Then by non-linear Peetre theorem, [3], µ satisfies local finite determination
property. Then by definitions of µ and S<µ> we have that S(∇)(l0) =
S<µ>(∇)(l0) for any classical linear connection ∇ on Rm such that the
identity map idRm is a ∇-normal coordinate system with center 0 ∈ Rm.
Then by the invariance of S and S<µ> with respect to normal coordinates
we deduce that S = S<µ>. �

Remark 2. Symplectic geometry methods are key ingredients in the study
of dynamical systems, mathematical physics, analytical mechanics, differ-
ential geometry, [1], [5].
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